• Title/Summary/Keyword: Battery size

Search Result 490, Processing Time 0.025 seconds

A Low-Power Design of Delta-Sigma Based Digital Frequency Synthesizer for Bio Sensor Networks (의료용 센서 네트워크를 위한 저전력 델타 시그마 디지털 주파수 합성기 설계)

  • Bae, Jung-Nam;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.5
    • /
    • pp.193-197
    • /
    • 2017
  • In this paper, we present a low-power delta-sigma based digital frequency synthesizer with high frequency resolution for bio sensor networks. Biomedical radio-frequency (RF) transceivers require miniaturized forms with a long battery life and low power consumption. For the technology scaling, digital circuits have become preferable compared to analog circuits because of the aggressive cost, size, flexibility, and repeatability. Therefore, the digital circuits based on standard-cell library are used to reduce a power consumption. Additionally, a delta-sigma is used for making fractional frequency tuning range. From the simulation, we confirmed that proposed scheme has good performance in accordance with power and frequency resolution.

Size Characteristics of Lead Particles Generated in Four Industries

  • Park, Dong-Uk;Paik, Nam-Won;Chung, Moon-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.4
    • /
    • pp.12-16
    • /
    • 2002
  • Workers' exposure to lead particles with diverse characteristics was assessed using personal cascade impactors in four different industries. Correlation analyses found that total airborne lead (PbA) concentrations could not explain the variation on MMAD of lead particles. From regression analysis, the concentrations of lead particles smaller than 1 um in AD were found to rise very slowly with increases in total PbA. They rarely contributed more than 50 ㎍/㎥ of total PbA over the range of 5.6-7,740 ㎍/㎥ although there are a few high values greater than 100 ㎍/㎥ while respirable lead concentrations significantly increased with increasing total PbA concentrations. In the secondary smelting and radiator manufacturing industries requiring high temperatures, the average fraction of respirable concentration in total PbA was 43.3% and 48.9%, respectively, which indicated an important contribution to the total PbA. In lead powder and battery manufacturing, it was less than 27%. Our study results concluded that workers' exposure to lead particles with diverse characteristics might not be effectively monitored by the current total PbA sampling alone. To protect workers exposed to different sizes of lead particles generated in many operations, an occupational standard for respirable lead particles should be added to the current total lead standard.

Z-Source Inverter with SiC Power Semiconductor Devices for Fuel Cell Vehicle Applications

  • Aghdam, M. Ghasem Hosseini
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.606-611
    • /
    • 2011
  • Power electronics is a key technology for electric, hybrid, plug-in hybrid, and fuel cell vehicles. Typical power electronics converters used in electric drive vehicles include dc/dc converters, inverters, and battery chargers. New semiconductor materials such as silicon carbide (SiC) and novel topologies such as the Z-source inverter (ZSI) have a great deal of potential to improve the overall performance of these vehicles. In this paper, a Z-source inverter for fuel cell vehicle application is examined under three different scenarios. 1. a ZSI with Si IGBT modules, 2. a ZSI with hybrid modules, Si IGBTs/SiC Schottky diodes, and 3. a ZSI with SiC MOSFETs/SiC Schottky diodes. Then, a comparison of the three scenarios is conducted. Conduction loss, switching loss, reverse recovery loss, and efficiency are considered for comparison. A conclusion is drawn that the SiC devices can improve the inverter and inverter-motor efficiency, and reduce the system size and cost due to the low loss properties of SiC devices. A comparison between a ZSI and traditional PWM inverters with SiC devices is also presented in this paper. Based on this comparison, the Z-source inverter produces the highest efficiency.

The basic research of transcutaneous energy transmission system for totally implantable artificial heart (체내 이식형 인공심장의 무선에너지 전송 시스템에 관한 기초적 연구)

  • Kim, J.H.;Kim, Dong-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.407-410
    • /
    • 2002
  • As a part of electro-mechanical totally implantable artificial heart, a transcutaneous energy transmission system has been developed. By mutual magnetic induction between the first coil on the skin and the subcutaneously implanted second coil, the system transfers electrical power through the skin. This research aimed a minimizing the size of the implanted part as well as maximizing the transfer efficiency. When an air gap is 1$\sim$2cm, voltage gain and current gain low and it is hard to transfer energy due to large leakage flux. That is, the required input voltage and input current must be large compared with the output voltage and output current, respectively, This paper research the inverter topology and the control method in order to increase the voltage gain and the current gain. For this purpose, this inverter employs double tune to compensate the large leakage inductance of primary and secondary of the transcutaneous transformer. And the output energy of transcutaneous energy transmission system supply for Lithium-ion battery charger.

  • PDF

Shape Design of Switched Reluctance Motor for 10kW type Pallect Truck (10KW급 지게차량용 스위치드 릴럭턴스 전동기의 형상 설계)

  • Lee, Jin-Woo;Woo, Kyung-Il;Kim, Hong-Seok;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.55-57
    • /
    • 2002
  • In industry, A pallet truck is drived mainly by d.c motor, because it use to battery for input power. However, d.c motor has a brush, this is the disadvantage of the d.c motor for a pallet truck. Though a brushless d.c motor has a permanent magnet, it is for low torque. Switched reluctance motors(SRM) have the advantage a high torque/weight ratio, as the large reluctance torque is made by salient poles of both start and rotor, and a high reliability, this paper design the shape of the switched reluctance motor that will replace a d.c motor for A pallet truck. First of all, designed parameter of SRM, outer diameter, diameter of rotor and stock length, from the outputr equation considering electric loading and magnetic loading. Next, design diameter of stator and rotor, depth of slot pole width, air gap as inner size of motor. The design of SRM certify the torque, the efficiency and the output power by a simulation.

  • PDF

Component Modeling of Micro SMES Based Design of Stabilizer Simulation for Power Supply using PSCAD/EMTDC (Micro SMES를 이용한 전원공급 안정화장치 시뮬레이션을 위한 PSCAD/EMTDC 컴포넌트 모델링)

  • Kim, Bong-Tae;Park, Min-Won;Seong, Ki-Chul;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.228-230
    • /
    • 2002
  • Recently, electric power reliability of our country has been improved. However, there are still remaining problems which are short-duration variations like instantaneous and momentary interruption and voltage sag by nature calamity ; typhoon, lightning, snow, etc. Besides, power quality ; harmonics, caused by using power electronics equipments, become a hot issue Malfunction of controller and stop machinery, and losing the important data are caused by poor power quality at a couple of second. Due to those, UPS, which is made up battery, has being used, but there are several disadvantages ; long charge and discharge time, environmental problem by acid and heavy metal, and short life time. As generally know, micro-SMES is a method to settle those mentioned. However, there need huge system apparatuses in order to verify the effect of system efficiency and stability considering the size of micro-SMES, the sort of converter type, and various conditions ; inner temperature, magnetic field, quench characteristic of micro-SMES, and etc. In this paper, in order to bring the mentioned above to a settlement, a micro-SMES is modeled with characteristics of micro-SMES is interfaced to EMTOC program using Fortran program interface method. We obtained hopeful answers and made the simulation model of micro SMES.

  • PDF

A Development of Optimal Design Model for Initial Blank Shape Using Artificial Neural Network in Rectangular Case Forming with Large Aspect Ratio (세장비가 큰 사각케이스 성형 공정에서의 인공신경망을 적용한 초기 블랭크 형상 최적설계 모델 개발)

  • Kwak, M.J.;Park, J.W.;Park, K.T.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.29 no.5
    • /
    • pp.272-281
    • /
    • 2020
  • As the thickness of mobile communication devices is getting thinner, the size of the internal parts is also getting smaller. Among them, the battery case requires a high-level deep drawing technique because it has a rectangular shape with a large aspect ratio. In this study, the initial blank shape was optimized to minimize earing in a multi-stage deep drawing process using an artificial neural network(ANN). There has been no reported case of applying artificial neural network technology to the initial blank optimal design for a square case with large aspect ratio. The training data for ANN were obtained though simulation, and the model reliability was verified by performing comparative study with regression model using random sample test and goodness-of-fit test. Finally, the optimal design of the initial blank shape was performed through the verified ANN model.

Effect of Carbon Dioxide in the Air on Zinc-air Cell (대기중의 이산화탄소가 공기-아연전지에 미치는 영향)

  • Kim, Nam-In;Park, Ki-Hong;Choi, Yong-Kook;Lee, Woo-Tae
    • Applied Chemistry for Engineering
    • /
    • v.10 no.2
    • /
    • pp.177-182
    • /
    • 1999
  • The electrolyte was brought into contact with air and potassium carbonate concentration was measured with various contact time in order to check the effect of carbon dioxide in the air on zinc-air cell. The relationship between potassium carbonate concentration in electrolyte and battery capacity was also studied. The potassium carbonate concentration increased due to carbon dioxide absorption with increasing contact time with air, but the cell capacity linearly decreased with increasing potassium carbonate concentration in the electrolyte. The rate of carbon dioxide absorption was mainly affected by the pore size of hydrophobic membrane. Our study showed that adapting the pore of hydrophobic membrane decreased the loss of cell discharge performance due to the presence of carbon dioxide or water vapor in the atmosphere.

  • PDF

Development of a miniaturized FM transmitter with low power

  • Ryu, Jeong-Tak;Kim, In-Gyeong;Kim, Yeon-Bo;Kim, Jong-Pil
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2008.10b
    • /
    • pp.629-633
    • /
    • 2008
  • Recently, there has been great interest in the application of short-range wireless communication system. In this paper, the miniaturized FM transmitter with low power is developed, and laboratory tests have been carried out. The FM transmitter uses FM radio waves to send sound from any system (MP3, PMP, PDA, MP3 Phone et.) to any nearby radio or stereo system. The transmitter is designed with $2.6cm{\times}2.6cm{\times}2.6cm$ system size. The operating voltage is 3.7 V and used the built-in storage battery. The system can use continuously during 7 hour with once charging. The transmission frequency can select one of 88.1 MHz, 88.3 MHz, or 88.5 MHz in compliance with utility condition. The channel separation ability is 40 dB. The operating temperature is $-10{\sim}+85^{\circ}C$, which use in the industry environment. Consequently, this system sis used conveniently with short distance information transmitter system at the industry field.

  • PDF

Lithium intercalation into a plasma-enhanced-chemical-vapour-deposited carbon film electrode

  • Pyun Su-II
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.1
    • /
    • pp.38-45
    • /
    • 1999
  • Electrochemical lithium intercalation into a PECVD (plasma enhanced chemical vapour deposited) carbon film electrode was investigated in 1 M $LiPF_6-EC$ (ethylene carbonate) and DEC (diethyl carbonate) solution during lithium intercalation and deintercalation, by using cyclic voltammetry supplemented with ac-impedance spectroscopy. The size of the graphitic crystallite in the a- and c-axis directions obtained from the carbon film electrode was much smaller than those of the graphite one, indicating less-developed crystalline structure with hydrogen bonded to carbon, from the results of AES (Auger electron spectroscopy), powder XRD (X-ray diffraction) method, and FTIR(Fourier transform infra-red) spectroscopy. It was shown from the cyclic voltammograms and ac-impedance spectra of carbon film electrode that a threshold overpotential was needed to overcome an activation barrier to entrance of lithium into the carbon film electrode, such as the poor crystalline structure of the carbon film electrode showing disordered carbon and the presence of residual hydrogen in its structure. The experimental results were discussed in terms of the effect of host carbon structure on the lithium intercalation capability.