• Title/Summary/Keyword: Battery power modules

Search Result 70, Processing Time 0.031 seconds

LED sign board design using solar cells (태양전지를이용한 LED 표식장치 설계)

  • Lee, Hoong-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2221-2226
    • /
    • 2009
  • This paper presents the design of the LED sign board system installed on the exterior of a building and powered by a photovoltaic system. A grid connected photovoltaic system has been designed with the capacity estimate of the load, battery and power. After the luminance and uniformity of LED load has been checked, the sign board and the solar cell modules have been installed. The performance and problems occurred during the field test for the photovoltaic LED sign board system have been analyzed.

Ultra low-power active wireless sensor for structural health monitoring

  • Zhou, Dao;Ha, Dong Sam;Inman, Daniel J.
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.675-687
    • /
    • 2010
  • Structural Health Monitoring (SHM) is the science and technology of monitoring and assessing the condition of aerospace, civil and mechanical infrastructures using a sensing system integrated into the structure. Impedance-based SHM measures impedance of a structure using a PZT (Lead Zirconate Titanate) patch. This paper presents a low-power wireless autonomous and active SHM node called Autonomous SHM Sensor 2 (ASN-2), which is based on the impedance method. In this study, we incorporated three methods to save power. First, entire data processing is performed on-board, which minimizes radio transmission time. Considering that the radio of a wireless sensor node consumes the highest power among all modules, reduction of the transmission time saves substantial power. Second, a rectangular pulse train is used to excite a PZT patch instead of a sinusoidal wave. This eliminates a digital-to-analog converter and reduces the memory space. Third, ASN-2 senses the phase of the response signal instead of the magnitude. Sensing the phase of the signal eliminates an analog-to-digital converter and Fast Fourier Transform operation, which not only saves power, but also enables us to use a low-end low-power processor. Our SHM sensor node ASN-2 is implemented using a TI MSP430 microcontroller evaluation board. A cluster of ASN-2 nodes forms a wireless network. Each node wakes up at a predetermined interval, such as once in four hours, performs an SHM operation, reports the result to the central node wirelessly, and returns to sleep. The power consumption of our ASN-2 is 0.15 mW during the inactive mode and 18 mW during the active mode. Each SHM operation takes about 13 seconds to consume 236 mJ. When our ASN-2 operates once in every four hours, it is estimated to run for about 2.5 years with two AAA-size batteries ignoring the internal battery leakage.

A Study on Improvement of Parking Guidance System to Low-Power Operation for Green Building

  • Lee, Jeong-Jun;Oh, Young-Tae;Lee, Choul-Ki;Yun, Il-Soo;Chung, Sang-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.3
    • /
    • pp.1-8
    • /
    • 2011
  • The parking guidance system can increase driver's convenience with detailed parking information service, but it continuously consumes electrical energy with large amount of sensors, displays and control modules. With the increase of the demand for green and sustainable building design, it becomes a meaningful issue for parking guidance system to reduce operating power. This paper presents the preliminary design and estimated results of a parking guidance system which is optimized to reduce the power consumption mainly on detectors and displays. The system design is based on commercial wireless parking detectors, wireless-loop-detector and earth-magnetic-detector. We have performed system architecture design, communication network design, parking information service scenario planning, battery life regulation and at last operating power estimation. With the 7 years of battery replace cycle, the estimated result for power consumption of designed system was 0.33W/slot, which is 13% of the traditional system's estimation result. The estimated annual maintain cost was similar to the traditional ultrasonic sensor based system's. The low power operable designed system can be expected to reduce CO2 emission.

A Low Power Parking Management System for Intelligent Building (인텔리전트 빌딩을 위한 저 전력 주차관리 시스템)

  • Lee, Chang-Ki;Im, Hyung-Kyu
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.6
    • /
    • pp.1479-1485
    • /
    • 2012
  • The parking management system can increase driver's convenience with detailed parking information service in the parking lot. At the same time, parking management system consumes non-negligible electrical energy with large amount of sensors, displays and control modules. With the increase in the demand for green and sustainable building design all over the world, it becomes a meaningful issue for parking management system to reduce operating power. This paper presents the preliminary design and estimated results of a parking management system which is optimized to reduce the power consumption mainly on detectors and displays. The system design is based on pre-developed wireless parking detectors, Park Tile and Park Disk. The system has a number of parking space detectors, vehicle count detectors, information displays, guidance terminals and other control units. We have performed system architecture design, communication network design, parking information service scenario planning, battery life regulation and at last operating power estimation. The estimated operating power was 0.93KW per parking-slot, which is 20% of traditional systems. The estimated annual maintenance cost was 18% of traditional systems.

Anti-lost Device Design using Bluetooth4.1 (블루투스4.1 기반 소형 분실방지용 송수신회로 설계)

  • Chae, Gyoo-Soo
    • Journal of Convergence Society for SMB
    • /
    • v.6 no.4
    • /
    • pp.25-30
    • /
    • 2016
  • This paper presents on the development of a compact anti-lost device requested recently. The proposed device consists of the master and slave modules based on Bluetooth4.1 technology. To implement a low-power characteristic, an algorithm has been also developed. The transmitting and receiving circuits are designed by using BoT CLE110 module supporting Bluetooth 4.1. The ATmega 328P-AU was used for the control and LP3874EMP was used as a linear regulator. Power consumption of the fabricated product in operating mode is only 10mAh and 35mAh for MCU operating state. Alarm operation distance is $10m{\pm}30%$, the effective radiated power is less than 10mW, the frequency band is designed to operate in the Bluetooth band with 26MHz bandwidth. And algorithms have been developed to extend the battery life. The size of the product was obtained as $45{\times}45{\times}15mm$ for master and $35{\times}35{\times}10mm$ fr slave. After the optimization process, it is expected to be commercialized as a wristwatch for anti-lost device.

Modular Robot for Promoting Creativity Development in Play and Education (창의력 증진을 위한 놀이 및 교육용 모듈러 로봇 개발)

  • Choi, Joon-Sik;Lee, Bo-Hee;Kim, Jin-Geol
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.572-580
    • /
    • 2014
  • This study deals with reconfigurable modular robot with respect to the compact and capability of representing the various actions for promoting creativity through education and play. Generally modular robot can be designed as a suitable robot that is transformed to various structure by reconstructing each cells, However, there are only few research on the education and play using those robots in the world and still nothing domestically. Unlike the existing modular robots only having a repeating motion, the proposed modular works by individual module such as sound is produced by sound module, wheel is driven by wheel module, LED module controls the visual expression, power is supplied by battery module, bluetooth module for communication, and dynamic motion realization is possible by using joint module. By manipulating the abilities endowed by individual modules, diversity of creative activities is possible and thus made an easy access for children. This study deals with the design of modular robotic by using the variety of different modules to endowed the learning and playing ability. And the study showed the utility of the operating behavior over the actual production and testing.

Hierarchical Event Detection for Low-Energy Operation In Video Surveillance Embedded System (영상 감시용 임베디드 시스템에서의 저에너지 동작을 위한 계층적 사건 탐지)

  • Kim, Tae-Rim;Kim, Bum-Soo;Kim, Dae-Joon;Kim, Geon-Su
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.3
    • /
    • pp.204-211
    • /
    • 2011
  • Embedded systems require intensively complex and high power dissipating modules that have the capability of real-time high performance data processing, wide bandwidth communication, and low power consumption. However, the current battery technology has not been developed as much as meeting the requirements of portable embedded systems for long system lifetime. In this paper, new approach that operates with low energy consumption is proposed to overcome the situation while guaranteeing detection accuracy. The designed method associates a variety of detection algorithms hierarchically to detect events happening around the system. The Change for energy consumption characteristics is shown with change for probabilistic characteristics and those relationships are analytically explained from experiments. Furthermore, several techniques to consume low energy and achieve high detection accuracy are described, depending on the event static or dynamic characteristics.

Design and Implementation of Enhanced Resonant Converter for EV Fast Charger

  • Ahn, Suk-Ho;Gong, Ji-Woong;Jang, Sung-Roc;Ryoo, Hong-Je;Kim, Duk-Heon
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.143-153
    • /
    • 2014
  • This paper presents a novel application of LCC resonant converter for 60kW EV fast charger and describes development of the high efficiency 60kW EV fast charger. The proposed converter has the advantage of improving the system efficiency especially at the rated load condition because it can reduce the conduction loss by improving the resonance current shape as well as the switching loss by increasing lossless snubber capacitance. Additionally, the simple gate driver circuit suitable for proposed topology is designed. Distinctive features of the proposed converter were analyzed depending on the operation modes and detail design procedure of the 10kW EV fast charger converter module using proposed converter topology were described. The proposed converter and the gate driver were identified through PSpice simulation. The 60kW EV fast charger which generates output voltage ranges from 50V to 500V and maximum 150A of output currents using six parallel operated 10kW converter modules were designed and implemented. Using 60kW fast charger, the charging experiments for three types of high-capacity batteries were performed which have a different charging voltage and current. From the simulation and experimental results, it is verified that the proposed converter topology can be effectively used as main converter topology for EV fast charger.

Design and Implementation of Wireless Power Transfer System for a Personal Rapid Transit (PRT) Vehicle (PRT 차량의 무선급전 시스템 설계 및 구현)

  • Kang, Seok-Won;Jeong, Rag-Gyo;Byun, Yeun-Sub;Um, Ju-Hwan;Kim, Baek-Hyun
    • Journal of Digital Convergence
    • /
    • v.12 no.11
    • /
    • pp.289-298
    • /
    • 2014
  • Recently, the traditional paradigm in railroad technology is changing as more efficient and cost-effective electric vehicle (EV) technologies have emerged. The original concept of PRT (Personal Rapid Transit) proposed in the past has come to be regarded as unrealistic, but its feasibility is improving through the utilization of an EV platform. In particular, battery-powered vehicles pose difficult technical challenges in attempts to achieve reliable and efficient operation. However, based on the inductive power transfer (IPT) technology, the fast charging of supercapacitors with high energy density can contribute to overcoming this technical challenge and promote the transition to electric-powered ground transportation by improving the appearance of cities. This study discusses the development process of a power supply system for PRT, including concept design, numerical analysis, and device manufacturing, along with performance predictions and evaluations. In terms of results, the system was found to meet the performance requirements for power supply modules on a test-bed.

CPLD-based Controller for Bi-directional Communication in a Capsule Endoscope (캡슐형 무선 내시경의 양방향 통신을 위한 CPLD 기반의 제어기 설계 및 구현)

  • Lee Jyung Hyun;Moon Yeon Kwan;Park Hee Joon;Won Chul Ho;Lee Seung Ha;Choi Hyun Chul;Cho Jin Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.447-453
    • /
    • 2004
  • In the case of a capsule that can acquire and transmit images from the intestines, the size of the module and the battery capacity in the capsule are subject to restriction. The capsule must be swallowable and the battery must maintain the stable power during the capsule travels in the gastrointestinal tract. Therefore, it is important to control the endoscope using bi-directional wireless communication. In this study, encoder and decoder CPLD modules for bi-directional capsule endoscopes were designed and implemented. The designed controller for capsule endoscope can transmit the images of GI-track from inside to outside of the body and the capsules can be controlled by external controller simultaneously. The designed and implemented controller was verified by an in-vivo animal experiments. From these experiments, it was verified that the CPLD module for bi-directional capsule endoscope satisfied the design specifications.