• Title/Summary/Keyword: Battery pack

Search Result 175, Processing Time 0.023 seconds

Study on cooling performance and isothermal maintenance of cylindrical type lithium-ion battery cell using phase change material (상변화물질을 활용한 원통형 리튬이온 배터리 셀의 냉각성능 및 등온유지성에 관한 연구)

  • Jae Hyung Yoon;Su Woong Hyun;Hee Jun Jeong;Dong Ho Shin
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.2
    • /
    • pp.34-45
    • /
    • 2023
  • When lithium-ion batteries operate out of the proper temperature range, their performance can be significantly degraded and safety issues such as thermal runaway can occur. Therefore, battery thermal management systems are widely researched to maintain the temperature of Li-ion battery cells within the proper temperature range during the charging and discharging process. This study investigates the cooling performance and isothermal maintenance of cooling materials by measuring the surface temperature of a battery cell with or without cooling materials, such as silicone oil, thermal adhesive, and phase change materials during discharge process of battery by the experimental and numerical analysis. As a result of the experiment, the battery pack filled with phase change material showed a temperature reduction of 47.4 ℃ compared to the case of natural convection. It proves the advanced utility of the cooling unit using phase change material that is suitable for use in battery thermal management systems.

Rapid-Charging Solution for 18650 Cylindrical Lithium-Ion Battery Packs for Forklifts

  • Kim, Dong-Rak;Kang, Jin-Wook;Eom, Tae-Ho;Kim, Jun-Mo;Lee, Jeong;Won, Chung-Yuen
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.184-194
    • /
    • 2018
  • In this paper, we propose a rapid-charging system for the lithium-ion battery (LIB) packs used in electric forklifts. The battery offers three benefits: reduced charge time, prolonged battery life, and increased charging efficiency. A rapid-charging algorithm and DC/DC converter topology are proposed to achieve these benefits. This algorithm is developed using an electrochemical model, which controls the maximum charging current limit depending on the cell voltage and temperature. The experimental use of a selected 18650 LIB cell verified the prolongation of battery life on use of the algorithm. The proposed converter offers the same topological merits as a conventional resonant converter but solves the light-load regulation problem of conventional resonant converters by adopting pulse-width modulation. A 6.6-kW converter and charging algorithm were used with a forklift battery pack to verify this method's operational principles and advantages.

Design of Voltage Equalizer of Li-ion Battery Pack (리튬-이온 배터리팩의 전압안정화회로 설계)

  • 황호석;남종하;최진홍;장대경;박민기
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.187-193
    • /
    • 2004
  • For a power source of usual electronic devices such as PDA, smart phone, UPS and electric vehicle, the battery made of serially connected multiple cells is generally used. In this case, if there are some unbalanced among cell voltages, the total lifetime and the total capacity of the battery are limited to a lower value. To maintain a balanced condition in cells, an effective method of regulating the cell voltage in indispensable. In this paper, we propose the design of a balancing circuit for electronic appliances. The balancing system was controlled by a micro-controller which enables to implement the balancing action during charging period. Proposed method has been verified by the experiment using the charger and recorder. The experimental results show that the individual battery equalization can improve battery capacity and battery lifetime and performance through an extended operational time.

Analysis, Design and Implementation of Flexible Interlaced Converter for Lithium Battery Active Balancing in Electric Vehicles

  • Dai, Shuailong;Wang, Jiayu;Li, Teng;Shan, Zhifei;Wei, Yewen
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.858-868
    • /
    • 2019
  • With the widespread use of modern clean energy, lithium-ion batteries have become essential as a more reliable energy storage component in the energy Internet. However, due to the difference in monomers, some of the battery over-charge or over-discharge in battery packs restrict their use. Therefore, a novel multiphase interleaved converter for reducing the inconsistencies of the individual cells in a battery pack is proposed in this paper. Based on the multiphase converter branches connected to each lithium battery, this circuit realizes energy transferred from any cell(s) to any other cell(s) complementarily. This flexible interlaced converter is composed of an improved bi-directional Buck-Boost circuit that is presented with its own available control method. A simulation model based on the PNGV model of fundamental equalization is built with four cells in PSIM. Simulation and experimental results demonstrate that converter and its control achieve simple and fast equalization. Furthermore, a comparison of traditional methods and the HNFABC equalization is provided to show the performance of the converter and the control of lithium-based battery stacks.

Numerical Study on the Heat Transfer Characteristics of 360 Wh Li-ion Battery Pack for Personal Mobility (360 Wh급 퍼스널 모빌리티용 리튬이온 배터리 팩의 열전달 특성에 관한 연구)

  • Kim, Dae-Wan;Seo, Jae-Hyeong;Kim, Hak-Min;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.8
    • /
    • pp.1-7
    • /
    • 2017
  • This study numerically evaluates the heat transfer characteristics of a 360-Wh Li-ion battery pack. The analysis was done in ANSYS CFX using different cell arrangements, cell holders, and case materials for a personal mobility device program. A total of four cases of cell arrangements were considered, along with various materials for both the cell holder and the case, such as polypropylene, aluminum, and magnesium alloy. Out of the four cell arrangements, model 2 showed the best heat transfer performance, while aluminum showed the best heat transfer performance for the cell holder and case.

Development of a Powertrain for 20kW Experimental Electric Vehicle Using Surface Mounted Permanent Magnet Synchronous Motor (표면 부착형 영구자석 동기 전동기를 이용한 20kW급 실험용 전기자동차 파워트레인 개발)

  • Park, Sung-Hwan;Lee, Jeong-Ju;Son, Jong-Yull;Lee, Young-Il
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.3
    • /
    • pp.240-248
    • /
    • 2017
  • This paper describes the development of a powertrain for a 20 kW experimental electric vehicle using a surface-mounted permanent magnet synchronous motor (SPMSM) and its application to a test vehicle. Two 10 kW SPMSMs are used in the powertrain, and two-level inverters are developed by using IGBTs to derive these motors. To control the SPMSM, a control board based on a TMS320F28335 DSP module, which has fast arithmetic function and floating point operator, is used. We develop a 100 V/40 A battery pack, which includes $32{\times}4$ LiFePO4 battery cells using commercial BMS. A commercial on-board charger with 220 V (AC) input and 100 V (DC) and 18 A output is used to charge the battery pack. The performance of the developed vehicle, such as acceleration availability, maximum speed, and maximum power, is estimated based on vehicle dynamics and verified through experiments.

A Study on Performance Improvement of Hybrid Energy Storage System for Mild HEV (마일드 하이브리드 차량용 복합형 에너지 저장장치의 성능개선에 관한 연구)

  • Lee, Back-Haeng;Shin, Dong-Hyun;Kim, Hee-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.10
    • /
    • pp.1763-1769
    • /
    • 2007
  • To improve the cycle-life and efficiency of an energy storage system for HEV, a dynamic control system consisted of a switch between a battery and an ultracapacitor module is proposed, which is appropriate for mild hybrid vehicle with 42V power net. The switch can be controlled based on the status of the battery and the ultracapacitor module, and a control algorithm that could largely decrease the number of high charging current peak is also implemented. Therefore the cycle life of the battery can be improved such that it is suitable for a mild hybrid vehicle with frequent engine start-stop and regenerative-braking. Also, by maximizing the use of the ultracapacitor, the system efficiency during high current charging and discharging operation is improved. Finally, this system has the effects that improves the efficiency of energy storage system and reduces the fuel consumption of a vehicle. To verify the validity of the proposed system, this paper presented cycles test results of different energy storage systems: a simple VRLA battery, hybrid energy Pack (HEP, a VRLA battery in Parallel with Ultracapacitor) and a HEP with a switch that controlled by energy management system (EMS). From the experimental result, it was proved the effectiveness of the algorithm.

Energy management strategies of a fuel cell/battery hybrid system using fuzzy logics (퍼지 논리를 이용한 연료전지/축전지 하이브리드 시스템의 운전제어)

  • Jeong, Kwi-Seong;Lee, Won-Yong;Kim, Chang-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.1
    • /
    • pp.1-11
    • /
    • 2004
  • Hybrid power systems with fuel cells and batteries have the potential to improve the operation efficiency and dynamic response. A proper load management strategy is important to better system efficiency and endurance in hybrid systems. In this paper, a fuzzy logic algorithm has been used to determine the fuel cell output power depending on the external required power and the battery state of charge(SoC). If the required power of the hybrid system is small and the SoC is small, then the greater part of the fuel cell power is used to charge the battery pack. If the required power is relatively big and the SoC is big, then fuel cell and battery are concurrently used to supply the required power. These IF-THEN operation rules are implemented by fuzzy logic for the energy management system of hybrid system. The strategy is evaluated by simulation. The results show that fuzzy logic can be effectively used to optimize the operational efficiency of hybrid system and to maintain the battery SoC properly.

Thermal Analysis of a Battery Cooling System with Aluminum Cooling Plates for Hybrid Electric Vehicles and Electric Vehicles (알루미늄 냉각 판을 이용한 하이브리드/전기차용 배터리 냉각시스템의 수치적 연구)

  • Baek, Seungki;Park, Sungjin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.60-67
    • /
    • 2014
  • The battery cells in lithium-ion battery pack assembled with high-capacity and high-power pouch cells, are commonly cooled with thin aluminum cooling plates in contact with the cells. For HEV/EV lithium-ion battery systems assembled with high-capacity, high-power pouch cells, the cells are commonly cooled with thin aluminum cooling plates in contact with the cells. Thin aluminum cooling plates are cooled by cold plate with coolant flow paths. In this study, the effect of the battery cooling system design including aluminum cooling plate thickness and various position of cold plate on the cooling performance are investigated by using finite element methods (FEM). Optimal cooling plate and cold plate design are proposed for improving the uniformity in temperature distributions as well as lowering average temperature for the cells with large capacities based on the simulation results.

A High Efficiency LLC Resonant Converter-based Li-ion Battery Charger with Adaptive Turn Ratio Variable Scheme

  • Choi, Yeong-Jun;Han, Hyeong-Gu;Choi, See-Young;Kim, Sang-Il;Kim, Rae-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.124-132
    • /
    • 2018
  • This paper proposes an LLC resonant converter based battery charger which utilizes an adaptive turn ratio scheme to achieve a wide output voltage range and high efficiency. The high frequency transformer of the LLC converter of the proposed strategy has an adaptively changed turn ratio through the auxiliary control circuit. As a result, an optimized converter design with high magnetizing inductance is possible, while minimizing conduction and turn-off losses and providing a regulated voltage gain to properly charge the lithium ion battery. For a step-by-step explanation, operational principle and optimal design considerations of the proposed converter are illustrated in detail. Finally, the effectiveness of the proposed strategy is verified through various experimental results and efficiency analysis based on prototype 300W Li-ion battery charger and battery pack.