• Title/Summary/Keyword: Battery model

Search Result 584, Processing Time 0.027 seconds

An exploratory study on the relationship between stress-related biomarker characteristics and psychological scales of daycare teachers using fitness trackers (피트니스 트래커를 활용한 보육교사의 스트레스 관련 생체지표 특성 경향과 심리척도와의 관계에 대한 탐색적 연구)

  • Jungmin, Lee;Yu-Mi, Kim
    • Korean Journal of Childcare and Education
    • /
    • v.18 no.6
    • /
    • pp.75-99
    • /
    • 2022
  • Objective: This study aims to explore ways to empirically analyze and manage childcare teachers' job stress based on their relationship with stress-related physiological indicators measured by a fitness tracker. Methods: The study participants were 27 childcare teachers in Gyeonggi-do and wore Garmin's wearable fitness tracker Vivosmart 4 for 15 days for three months. The collected information was analyzed for mean, SD, ANOVA, and correlation using JAMOVI 2.00. Results: First, among the daily changes of physiological indicators measured by a fitness tracker, the data collected on Mondays were significant. On Mondays, the stress index was high, the duration of the rest period was short, and the sleep time was short. The stress of childcare teachers showed a significant negative relationship with the body battery which was calculated by considering the duration of the rest period, heart rate variability, stress, and activity level. Also, the duration of deep sleep was positively correlated with a low degree of stress. There was a significant relationship between the childcare teachers' psychological indicators and the biomarkers measured by fitness trackers. Conclusion/Implications: Stress research using a fitness tracker is big data, and in-depth analysis is possible. Fitness trackers can collect and utilize repeated measurement data for each individual childcare teacher.

Improvement of the Yaw Motion for Electric Vehicle Using Independent Front Wheel Steering and Four Wheel Driving (독립 전륜 조향 및 4륜 구동을 이용한 전기 차량의 선회 운동 향상)

  • Jang, Jae-Ho;Kim, Chang-Jun;Kim, Sang-Ho;Kang, Min-Sung;Back, Sung-Hoon;Kim, Young-Soo;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.1
    • /
    • pp.45-55
    • /
    • 2013
  • With the recent advancement of control method and battery technology, the electric vehicle have been researched to replace the conventional vehicle with electric vehicle with the view point of the environmental concerns and energy conservation. An electric vehicle which is equipped with the independent front steering system and in-wheel motors has advantage in terms of control. For example, the different torque which generated by left and right wheels directly can make yaw moment and the independent steering using outer wheel control is able to reduce the sideslip angle. Using of independent steering and driving system, the 4 wheel electric vehicle can improve a performance better than conventional vehicle. In this paper, we consider the method for improving the cornering performance of independent front steering system and in-wheel motor used electric vehicle with the compensated outer wheel angle and direct yaw moment control. Simulation results show that the method can improve the cornering performance of 4 wheel electric vehicle. We also apply the steering motor failure to steer the vehicle turned by the torque difference without steering. This paper describes an independent front steering and driving, consist of three parts; Vehicle Model, Control Algorithm for independent steering and driving and simulation. First, vehicle model is application of TruckSim software for independent front steering and 4 wheel driving. Second, control algorithm describes the reduced sideslip and direct yaw moment method in view of cornering performance. Last is simulation and verification.

Energy-efficient Routing in MIMO-based Mobile Ad hoc Networks with Multiplexing and Diversity Gains

  • Shen, Hu;Lv, Shaohe;Wang, Xiaodong;Zhou, Xingming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.700-713
    • /
    • 2015
  • It is critical to design energy-efficient routing protocols for battery-limited mobile ad hoc networks, especially in which the energy-consuming MIMO techniques are employed. However, there are several challenges in such a design: first, it is difficult to characterize the energy consumption of a MIMO-based link; second, without a careful design, the broadcasted RREP packets, which are used in most energy-efficient routing protocols, could flood over the networks, and the destination node cannot decide when to reply the communication request; third, due to node mobility and persistent channel degradation, the selected route paths would break down frequently and hence the protocol overhead is increased further. To address these issues, in this paper, a novel Greedy Energy-Efficient Routing (GEER) protocol is proposed: (a) a generalized energy consumption model for the MIMO-based link, considering the trade-off between multiplexing and diversity gains, is derived to minimize link energy consumption and obtain the optimal transmit model; (b) a simple greedy route discovery algorithm and a novel adaptive reply strategy are adopted to speed up path setup with a reduced establishment overhead; (c) a lightweight route maintenance mechanism is introduced to adaptively rebuild the broken links. Extensive simulation results show that, in comparison with the conventional solutions, the proposed GEER protocol can significantly reduce the energy consumption by up to 68.74%.

Efficient Energy Management for a Solar Energy Harvesting Sensor System (태양 에너지 기반 센서 시스템을 위한 효율적인 에너지 관리 기법)

  • Noh, Dong-Kun;Yoon, Ik-Joon
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.7
    • /
    • pp.478-488
    • /
    • 2009
  • Using solar power in wireless sensor networks (WSNs) requires adaptation to a highly varying energy supply and to a battery constraint. From an application's perspective, however, it is often preferred to operate at a constant quality level as opposed to changing application behavior frequently. Reconciling the varying supply with the fixed demand requires good tools for allocating energy such that average of energy supply is computed and demand is fixed accordingly. In this paper, we propose a probabilistic observation-based model for harvested solar energy. Based on this model, we develop a time-slot-based energy allocation scheme to use the periodically harvested solar energy optimally, while minimizing the variance in energy allocation. We also implement the testbed and demonstrate the efficiency of the approach by using it.

Channel Selection Using Optimal Channel-Selection Policy in RF Energy Harvesting Cognitive Radio Networks (무선 에너지 하비스팅 인지 무선 네트워크에서 최적의 채널 선택 정책을 이용한 채널 선택)

  • Jung, Jun Hee;Hwang, Yu Min;Cha, Gyeong Hyeon;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.3
    • /
    • pp.1-5
    • /
    • 2015
  • Recently, RF energy harvesting technology is a promising technology for small-size IoT(Internet of Things) devices such as sensor to resolve battery scarcity problem. When applied to existing cognitive radio networks, this technology can be expected to increase network throughput through the increase of cognitive user's operating time. This paper proposes a optimal channel-selection policy for RF energy harvesting CR networks model where cognitive users in harvesting zone harvest ambient RF energy from transmission by nearby active primary users and the others in non-harvesting zone choose the channel and communicate with their receiver. We consider that primary users and secondary users are distributed as Poisson point processes and contact with their intended receivers at fixed distances. Finally we can derive the optimal frame duration, transmission power and density of secondary user from the proposed model that can maximize the secondary users's throughput under the given several conditions and suggest future directions of research.

Design of a Piezocomposite Generating Element and Its Characteristics (압전-복합재료 발전 소자의 설계 및 특성)

  • Tien, Minh Tri;Kim, Jong-Hwa;Goo, Nam-Seo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.7
    • /
    • pp.867-872
    • /
    • 2010
  • Unused energy derived from sources in nature can be captured and stored for future use, for example, to recharge a battery or power a device; this process of capturing and storing energy is called energy harvesting. Extensive investigations are being carried out in order to use piezoelectricity to harvest the energy generated by body movements or machine vibrations. This paper presents a simple analytical model that describes the output voltage effectiveness of a Piezocomposite Generating Element (PCGE) from vibration and its experimental verification. PCGE is composed of carbon/epoxy, PZT, and glass/epoxy layers. During the manufacturing process, the stacked layers were cured at $177^{\circ}C$ in an autoclave, which created residual stresses in PCGE and altered the piezoelectric properties of the PZT layer. In the experiments, three kinds of lay-up configurations of PCGE were considered to verify the proposed prediction model and to investigate its capability to convert oscillatory mechanical energy into electrical energy. The predicted performance results are in good agreement with observed experimental ones.

Application Study of Recoil Mechanism using Friction Springs (마찰스프링의 주퇴복좌장치 적용성 연구)

  • Cha, Ki-Up;Gimm, Hak-In;Cho, Chang-Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.3
    • /
    • pp.324-333
    • /
    • 2012
  • The conventional medium and large caliber gun, in general, utilize the hydro-pneumatic recoil mechanism to control the firing impulse and to return to the battery position. However, this kind of mechanism may cause the problems like the leakages and the property changes in oil and gas due to the temperature variations between low and high temperatures. Accordingly, the friction spring mechanism has recently been researched as an alternative system. The friction spring mechanism consists of a set of closed inner and outer rings with the concentric tapered contact surfaces assembled in the columnar form, and can only be used under the compression load. When the spring column is axially loaded, the tapered surfaces become overlapped, causing the outer rings to expand while the inner rings are being contracted in diameter allowing an axial displacement. Because of friction between tapered contact surfaces, much higher spring stiffness is obtained on the stroke at the increase in load than the stroke at the decrease. In this paper, the dynamic equations regarding the friction spring system and the design approach have been investigated. It is also tried for a dynamic model representing the recoil motion and the friction spring forces. And the model has been proved from firing test using a gun system with friction springs. All the results show that the recoil mechanism using friction springs can substitute for the classic hydro-pneumatic recoil system.

Analysis and suggestions for elementary textbooks based on the elementary students' understanding of electric circuits (초등학생의 전기 회로 이해에 따른 자연 교과서 전기 단원에 대한 분석과 제안)

  • Kim, Eun-Sook;Shim, Jae-Gyu;Jung, Yong-Jae;Chang, Byung-Gi
    • Journal of The Korean Association For Science Education
    • /
    • v.19 no.4
    • /
    • pp.570-584
    • /
    • 1999
  • The units about electricity in 5th and 6th science curriculum for elementary school was analyzed and the elementary students' understanding of related concepts was investigated. This study was to make connection between the research about alternative concepts and writing textbooks. It was found that students' response had following characteristics. They had strong belief that the + and - ends of battery should be connected. However this belief was not complete because students did not understand that the other circuit elements had to be connected properly. When the circuit involve more than one bulbs or batteries, they counted the number of batteries or bulbs only and paid little attention to the connection of them. In explaining circuits and the brightness of the bulbs in the circuits. students tried to explains the circuit using scientific terms but failed to used them properly. Although the concept of resistance was not dealt explicitly. student had reasonable qualitative understanding about resistance. According to response of students, several suggestions might be made for the curriculum. The structure and the circuit elements and the proper connection needs to be taught. Also more emphasis is necessary to pay attention to the connection in addition to the numbers of bulbs or batteries. Finally, it needs to be investigated carefully if it is better to introduce some qualitative model to explain the amount of current through bulb depending on the connection and the number of bulbs. It might also be better to introduce some terms, such as current and resistance with the model.

  • PDF

System Reliability Analysis for Multiple Failure Modes of Piezoelectric Energy Harvester Using Generalized Complementary Intersection Method (Generalized Complementary Intersection Method를 이용한 압전 에너지 수확 장치의 다중 파손모드에 대한 시스템 신뢰성 해석)

  • Yoon, Heonjun;Youn, Byeng D.;Kim, Heung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.544-544
    • /
    • 2014
  • Energy harvesting technology, which scavenges electric power from ambient, otherwise wasted, energy sources, has been explored to develop self-powered wireless sensors and possibly eliminate the battery replacement cost for wireless sensors. Among ambient energy sources, vibration energy can be converted into electric power through a piezoelectric energy harvester. For the last decade, although tremendous advances have been made in design methodology to maximize harvestable electric power under a given vibration condition, the research in reliability assessment to ensure durability has been stagnant due to the complicated nature of the multiple failure modes of a piezoelectric energy harvester, such as the interfacial delamination, fatigue failure, and dynamic fracture. Therefore, this study presents the first-ever system reliability analysis for multiple failure modes of a piezoelectric energy harvester using the Generalized Complementary Intersection Method (GCIM), while accounts for the energy conversion performance. The GCIM enables to decompose the probabilities of high-order joint failure events into probabilities of complementary intersection events. The electromechanically-coupled analytical model is implemented based on the Kirchhoff plate theory to analyze its output performances of a piezoelectric energy harvester. Since a durable as well as efficient design of a piezoelectric energy harvester is significantly important in sustainably utilizing self-powered electronics, we believe that technical development on system reliability analysis will have an immediate and major impact on piezoelectric energy harvesting technology.

  • PDF

Design and Implementation of Low-power RTLS Tag using Adaptive Blink (적응형 블링크를 이용한 저전력 RTLS 태그의 설계 및 구현)

  • Jung, Yeon-Su;Kim, Sae-Na;Baek, Yun-Ju
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.3
    • /
    • pp.580-585
    • /
    • 2009
  • Real Time Locating Systems (RTLS) are used to track and identify the location of objects in real time using simple, inexpensive tags attached to or embedded in objects and readers that receive the wireless signals from these tags to determine their locations. A tag is powered an internal source such as a battery. The blink frequency of a tag affects the energy efficiency and the locating accuracy of RTLS. The mobility of a tag also affects the locating accuracy. In this paper, we introduce a RTLS tag design which improves the locating accuracy and the power efficiency. We propose an adaptive transmission-rate control algorithm using a motion sensor. By analyzing the signal pattern of the motion sensor, we can build a model to estimate the speed of the motion. Using this model, our algorithm can achieve better locating accuracy and lower power consumption than those of the conventional method. In our experiments, the number of transmission reduced as 40%, keeping similar locating accuracy.