• Title/Summary/Keyword: Battery management systems

Search Result 163, Processing Time 0.023 seconds

A MATLAB-based Approach for Visualization of Human Thermal Psychology (MATLAB 기반 열심리 가시화 기법)

  • Gineesh Gopi;Mohammad F. B. Suhaimi;Seong Eun Yoon;Hyunjin Lee;Jung Kyung Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.2
    • /
    • pp.72-82
    • /
    • 2023
  • Effective thermal management in a battery electric vehicle (BEV) is crucial for reducing energy consumption and maximizing driving range in cold climates. Consequently, original equipment manufacturers are actively investing in the development of local heating systems. Visualizing occupant thermal behaviors or comfort can readily provide valuable insights that would substantially impact the design and control strategies of such microclimate systems. This study uses MATLAB for three-dimensional visualization of human thermal psychology. The developed program enables qualitative assessment of occupant comfort in BEVs.

Power Control and Dynamic Performance Analysis of a Grid-Interactive Wind/PV/BESS Hybrid System (계통연계형 풍력, 태양광 및 축전지 하이브리드 시스템의 출력제어 및 동특성 해석)

  • Kim, Seul-Ki;Jeon, Jin-Hong;Cho, Chang-Hee;Ahn, Jong-Bo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.317-324
    • /
    • 2007
  • Most conventional hybrid systems using renewable energy sources have been applied for stand-alone operation, but Utility-interface may be an useful and viable option for hybrid systems. Grid-connected operation may have benefits such as reduced losses in power system distribution, utility support in demand side management, and peak load shaving. This paper addresses power control and dynamic performance of a grid-connected PV/wind/BESS hybrid system. At all times the PV way and the wind turbine are individually controlled to generate the maximum energy from given weather conditions. The battery energy storage system (BESS) charges or discharges the battery depending on energy gap between grid invertger generation and production from the PV and wind system. The BESS should be also controlled without too frequently repeated shifts in operation mode, charging or discharging. The grid inverter regulates the generated power injection into the grid. Different control schemes of the grid inverter are presented for different operation modes, which include normal operation, power dispatching, and power smoothing. Simulation results demonstrate that the effectiveness of the proposed power control schemes for the grid-interactive hybrid system.

Operation Performance of a Polymer Electrolyte Fuel Cell Cogeneration System for Residential Application (가정용 고분자연료전지 시스템의 운전 방법에 따른 성능 비교)

  • Lee, W.Y.;Jeong, K.S.;Yu, S.P.;Um, S.K.;Kim, C.S.
    • Journal of Hydrogen and New Energy
    • /
    • v.16 no.4
    • /
    • pp.364-371
    • /
    • 2005
  • Fuel cell systems(FCS) have a financial and environmental advantage by providing electricity at a high efficiency and useful heat. For use in a residence, a polymer electrolyte fuel cell system(PEFCS) with a battery pack and a hot water storage tank has been modelled and simulated. The system is operated without connection to grid line. Its electric conversion efficiency and heat recovery performance are highly dependent on operation strategies and also on the seasonal thermal and electric load pattern. The output of the fuel cell is controlled stepwise as a function of the state of the battery and/or the storage water tank. In this study various operation strategies for cogeneration fuel cell systems are investigated. Average fuel saving rates at different seasons are calculated to find proper load management strategy. The scheme can be used to determine the optimal operating strategies of PEFCS for residential and building applications.

A Power-Aware Scheduling Algorithm with Voltage Transition Overhead (전압 변경 오버헤드를 고려한 전력 관리 알고리즘)

  • Kweon, Hyek-Seong;Ahn, Byoung-Chul
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.5
    • /
    • pp.641-650
    • /
    • 2008
  • As portable devices are used widely, power management algorithm is essential to extend battery use time on small-sized battery power. Although many methods have been proposed, they assumed the voltage transition overhead was negligible or was considered partially. However, the voltage transition overhead might not guarantee to schedule real-time tasks in portable multimedia systems. This paper proposes the adaptive power-aware algorithm to minimize the power consumption by considering the voltage transition overhead. It selects only a few discrete frequencies from the whole frequencies of a system and adjusts the interval between two consecutive frequencies based on the system utilization to reduce the number of frequency change. This algorithm saves the power consumption about 10 to 25 percent compared to a CC RT-DVS method and a frequency-smoothing method.

  • PDF

An Improved Task Scheduling Algorithm for Efficient Dynamic Power Management in Real-Time Systems (실시간 시스템에서 효율적인 동적 전력 관리를 위한 태스크 스케줄링 알고리듬에 관한 연구)

  • Lee Won-Gyu;Hwang Sun-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.4A
    • /
    • pp.393-401
    • /
    • 2006
  • Energy consumption is an important design parameter for battery-operated embedded systems. Dynamic power management is one of the most well-known low-power design techniques. This paper proposes an online realtime scheduling algorithm, which we call energy-aware realtime scheduling using slack stealing (EARSS). The proposed algorithm gives the highest priority to the task with the largest degree of device overlap when the slack time exists. Scheduling result enables an efficient power management by reducing the number of state transitions. Experimental results show that the proposed algorithm can save the energy by 23% on average compared to the DPM-enabled system scheduled by the EDF algorithm.

Design and Implementation for Portable Low-Power Embedded System (저전력 휴대용 임베디드 시스템 설계 및 구현)

  • Lee, Jung-Hwan;Kim, Myung-Jung
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.7
    • /
    • pp.454-461
    • /
    • 2007
  • Portable embedded systems have recently become smaller in size and offer a variety of junctions for users. These systems require high performance processors to handle the many functions and also a small battery to fit inside the system. However, due to its size, the battery life has become a major issue. It is important to have both efficient power design and management for each function, while optimizing processor voltage and clock frequency in order to extend the battery life of the system. In this paper, we calculated the efficiency of power in optimizing power rail. This system has two microprocessors. One is used to play music and movie files while the other is for DMB. In order to reduce power consumption, the DMB microprocessor is turned of while music or videos are played. Lastly, DVFS is applied to the processor in the system to reduce power consumption. Experimental results of the implemented system have resulted in reduced power consumption.

Battery Efficient Wireless Network Discovery Scheme for Inter-System Handover in Heterogeneous Wireless Networks (이종무선 네트워크 환경에서 네트워크 간 핸드오버를 위한 전력 효율적 무선 네트워크 탐지 기법)

  • Lee Bong-Ju;Kim Won-Ik;Song Pyeong-Jung;Shin Yeon-Seung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.2A
    • /
    • pp.128-137
    • /
    • 2006
  • In this paper, we propose a wireless network discovery scheme which support effective device power management by employing battery efficient network scanning procedure. Multi-mode terminals need to discover other wireless systems, above all, to execute an inter-system handover in the environment of heterogeneous wireless networks. The existing methods introduced in some recent research reports have certain shortcomings, such as battery power consumption increased by frequent modem activation, or the multi-mode terminal's inability to promptly discover wireless system. We Propose a scheme in which multi-mode terminals more quickly and accurately discover other wireless systems than previous schemes, while consuming minimum power. It also proves that the scheme has better performance by comparing it with the existing schemes.

Design of AC/DC Combined V2X System for Small Electric Vehicle (소형 전기차 적용을 위한 AC/DC 복합 V2X 시스템 설계)

  • Kim, Yeong-Jung;Chang, Young-Hag;Moon, Chae-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.617-624
    • /
    • 2022
  • The small electric vehicles equipped with V2X(vehicle to everything) systems may provide more information and function to the existing navigation system of the vehicle. The key components of V2X technology include V2V (vehicle to vehicle), V2N(vehicle to network) and V2I (vehicle to infrastructure). This study is to design and implementation of VI type E-PTO which is interfaced with external equipments, the work designs the components of E-PTO such as DC/DC converter, DC/AC converter, battery bidirectional charging system etc. Also, it implements the devices and control systems for driving. The test results of VI type E-PTO components showed allowable 10% requirements of transient voltage variation rate and recovery time within 100ms for start/stop and normal operation.

Evaluation Algorithms for Multiple Function of Dispersed Electrical Energy Storage Systems

  • Son, Joon-ho;Choi, Sung-Sik;Rho, Dae-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2245-2253
    • /
    • 2018
  • With the increase of electrical consumption and the unbalance of power demand and supply, power reserve rate is getting smaller and also the reliability of the power supply is getting deteriorated. Under this circumstance, the electrical energy storage (EES) System is considered as one of essential countermeasure for demand side management. This paper proposes efficient evaluation algorithms of multiple functions for EES systems, especially the secondary battery energy storage systems, in the case where they are interconnected with the power distribution systems. It is important to perform the economic evaluation for the new energy storage systems in a quantitative manner, because they are very costly right now. In this paper, the multiple functions of EES systems such as load levelling, effective utilization of power distribution systems and uninterruptible power supply are classified, and then the quantitative evaluation methods for their functions are proposed. From the case studies, it is verified that EES systems installed at distribution systems in a dispersed manner have multiple functions involved with direct and indirect benefits and also they can be expected to introduce to distribution systems with respects to economical point of view.

Hybrid Governor for Wearable OS Using H/W Low-power Features (하드웨어 저전력 기능을 활용한 웨어러블 운영체제의 하이브리드 가버너)

  • Lee, SungYup;Kim, HyungShin
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.3
    • /
    • pp.117-124
    • /
    • 2018
  • Wearable devices have become widespread. Fitness band is one of common wearable devices, providing useful functions. It helps users to monitor and collect their status such as heart rate and travel distance. Wearable devices, including fitness bands, are designed in small size and it ends up having small battery capacity. In that regard, it is necessary to expand the lifetime of wearable devices. Conventional power management scheme of wearable devices is based on DVFS Ondemand Governor and peripheral control by timeout event, such as turning off the LCD. In this paper, we propose a hybrid governor applying hardware supporting low power mode such as sleep mode to exploit the periodicity of fitness band task. In addition, we show hybrid governor outperforms in power consumption than conventional power management scheme of wearable devices based on Ondemand Governor through experiments.