• 제목/요약/키워드: Battery energy storage

검색결과 755건 처리시간 0.031초

전기자동차 배터리의 에너지 저장장치로의 재사용에 관한 연구 (Research on the Re-Use of Electric Vehicle Battery for Energy Storage Systems)

  • 부하이남;최우진
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2016년도 전력전자학술대회 논문집
    • /
    • pp.345-346
    • /
    • 2016
  • The grid-connected energy storage systems, which could increase the reliability, efficiency, and cleanliness of the grid is presently restricted by the high cost of batteries. This problems could be solved by batteries retired from automotive services. These batteries can provide a low-cost system for energy storage and other applications such as residential applications and renewable energy integration. This paper gives an overview of technical requirements for the re-use of the electric vehicle batteries in energy storage systems.Firstly, the motivation of research is introduced. Secondly, the technologies needed for the re-use of the battery are introduced such asidentification of the battery characteristics, grading of the aged batteries, identification of the state-of-charge and state-of-health of the battery and suitable power electronic converter topologies. In addition the control strategy to maximize the battery lifespan and bypass the faulty batteries is presented and one-stop solution to implement the above mentioned technologies are also given.

  • PDF

2MVA급 배터리 에너지 저장시스템 개발 (A Development of 2MVA Battery Energy Storage System)

  • 김수홍;김태형;김윤현;인동석;권병기;최창호
    • 전력전자학회논문지
    • /
    • 제17권2호
    • /
    • pp.174-181
    • /
    • 2012
  • Energy storage system connected to the grid has two functions such as the surplus power of a grid is stored in batteries or the energy stored in batteries will supply to the grid when the grid needs. The battery energy storage system consist of power condition system (PCS) for power supply and battery conditioning system (BCS). Lithium-ion batteries are mainly used. In this paper, the battery energy storage system connected to the grid described. The configuration of the 2MVA class power control system using water cooling and battery system are presented. And control method for the system and the output filter design method are proposed. Experimental verification of the proposed system is provided with 2MVA PCS and 500kWh BCS.

MW급 PCS 성능검증용 배터리 모의장치 개발 (Development of Battery Simulator for Performance Verification of MW-class PCS)

  • 이종학;인동석;허남억;박영민;박기원;권병기
    • 전력전자학회논문지
    • /
    • 제21권2호
    • /
    • pp.160-167
    • /
    • 2016
  • An energy storage system (ESS) is applied to increase the energy efficiency of large plants or buildings that consume much energy, to improve the power quality of power systems, and to stabilize renewable energy source such as photovoltaic or wind turbine. The ESS is composed of a power conditioning system (PCS) and an energy storage. The battery is used as the energy storage. The battery is needed to design and verify a hardware and control system of PCS. Usually, a battery simulator is used instead of a battery, which is costly and hard to manage. In this paper, the development of the battery simulator for performance verification of the MW-class PCS is described. The battery simulator simulates the charging and discharging characteristics of batteries to design and verify the hardware and control system of PCS.

마이크로그리드에의 적용을 위한 에너지 저장장치의 관리 (Management of the Energy Storage System for a microgrid)

  • 김성현;이계병;손광명
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.505_506
    • /
    • 2009
  • This paper presents effective operation methods for the battery energy storage applied to a microgrid. In an islanded microgrid, energy storage is needed to satisfy an energy balance between generation and consumption. The microgrid can be classified according to the ratio of the sensitive load and renewable energy source in the microgrid. For effective management of the battery energy storage, based on the classified microgrid, suitable operation methods for the battery energy storage system are provided from well-known battery applications.

  • PDF

Lifetime Management Method of Lithium-ion battery for Energy Storage System

  • Won, Il-Kuen;Choo, Kyoung-Min;Lee, Soon-Ryung;Lee, Jung-Hyo;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권3호
    • /
    • pp.1173-1184
    • /
    • 2018
  • The lifetime of a lithium-ion battery is one of the most important issues of the energy storage system (ESS) because of its stable and reliable operation. In this paper, the lifetime management method of the lithium-ion battery for energy storage system is proposed. The lifetime of the lithium-ion battery varies, depending on the power usage, operation condition, and, especially the selected depth of discharge (DOD). The proposed method estimates the total lifetime of the lithium-ion battery by calculating the total transferable energy corresponding to the selected DOD and achievable cycle (ACC) data. It is also demonstrated that the battery model can obtain state of charge (SOC) corresponding to the ESS operation simultaneously. The simulation results are presented performing the proposed lifetime management method. Also, the total revenue and entire lifetime prediction of a lithium-ion battery of ESS are presented considering the DOD, operation and various condition for the nations of USA and Korea using the proposed method.

마일드 하이브리드 차량용 복합형 에너지 저장장치의 성능개선에 관한 연구 (A Study on Performance Improvement of Hybrid Energy Storage System for Mild HEV)

  • 이백행;신동현;김희준
    • 전기학회논문지
    • /
    • 제56권10호
    • /
    • pp.1763-1769
    • /
    • 2007
  • To improve the cycle-life and efficiency of an energy storage system for HEV, a dynamic control system consisted of a switch between a battery and an ultracapacitor module is proposed, which is appropriate for mild hybrid vehicle with 42V power net. The switch can be controlled based on the status of the battery and the ultracapacitor module, and a control algorithm that could largely decrease the number of high charging current peak is also implemented. Therefore the cycle life of the battery can be improved such that it is suitable for a mild hybrid vehicle with frequent engine start-stop and regenerative-braking. Also, by maximizing the use of the ultracapacitor, the system efficiency during high current charging and discharging operation is improved. Finally, this system has the effects that improves the efficiency of energy storage system and reduces the fuel consumption of a vehicle. To verify the validity of the proposed system, this paper presented cycles test results of different energy storage systems: a simple VRLA battery, hybrid energy Pack (HEP, a VRLA battery in Parallel with Ultracapacitor) and a HEP with a switch that controlled by energy management system (EMS). From the experimental result, it was proved the effectiveness of the algorithm.

MATLAB/Simulink를 이용한 오프그리드형 고효율 태양광 충전 시스템 설계 (Design of an Off Grid type High efficiency Solar charging system Using MATLAB/Simulink)

  • 미흐렛 가아브레슬라세 마루;김민;변기식;김관형
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 춘계학술대회
    • /
    • pp.735-737
    • /
    • 2017
  • An Off grid or remote solar electric systems are an energy supply to our home or to our companies without the utility of Grid at all. Off grid solar systems are very important for those who live in remote locations especially for developing countries where getting the electric grid is extremely expensive, inconvenient or for those who doesn't need to pay a monthly bill with the electric bill in general. The main critical components of any solar power system or renewable energy harvesting systems are the energy storage systems and its charge controller system. Energy storage systems are the essential integral part of a solar energy harvesting system and in general for all renewable energy harvesting systems. To provide an optimal solution of both high power density and high energy density at the same time we have to use hybrid energy storage systems (HESS), that combine two or more energy storage technologies with complementary characteristics. In this present work, design and simulation we use two storage systems supercapacitor for high power density and lithium based battery for high energy density. Here the system incorporates fast-response supercapacitors to provide power to manage solar smoothing and uses a battery for load shifting. On this paper discuss that the total energy throughout of the battery is much reduced and the typical thermal stresses caused by high discharge rate responses are mitigated by integrating supercapacitors with the battery storage system. In addition of the above discussion the off grid solar electric energy harvesting presented in this research paper includes battery and supercapacitor management system, MPPT (maximum power point tracking) system and back/boost convertors. On this present work the entire model of off grid electric energy harvesting system and all other functional blocks of that system is implemented in MATLAB Simulink.

  • PDF

간략화된 배터리 모델이 적용된 IUIa 충전 방식의 에너지 저장장치의 PSCAD/EMTDC 시뮬레이션 모델에 관한 연구 (A Study on the PSCAD/EMTDC Simulation Model of Battery Energy Storage with Simplified Battery Model and IUIa Charging Method)

  • 김성현;이계병;홍준희;손광명
    • 조명전기설비학회논문지
    • /
    • 제24권12호
    • /
    • pp.84-90
    • /
    • 2010
  • In order to level electric power of the photovoltaic and wind-turbine system and ensure fast response of the fuel-cell and micro-turbine, the energy storage is required in the microgrid system. In this paper, a simplified simulation model of the battery energy storage for charging method with IUIa is developed using PSCAD/EMTDC. The model consists of e.m.f.(electromotive force), internal resistor and overvoltage capacitor. A method for deciding parameters of the model on a case-by-case basis is proposed. The developed model can be used in the simulation of a complicated system such as a microgrid system.

에너지저장시스템에서 발전량 예측을 통한 능동적 배터리 충전 관리 방안 (An Active Battery Charge Management Scheme with Predicting Power Generation in ESS)

  • 김정준;채범석;이영관;조기환
    • 스마트미디어저널
    • /
    • 제9권1호
    • /
    • pp.84-91
    • /
    • 2020
  • 신재생 에너지를 활용이 높아지면서 에너지저장시스템의 활용과 효율성에 대한 관심이 높아지고 있다. 특히 태양광 에너지저장시스템을 구성하는 서브시스템에서 이상 징후 발생에 능동적으로 대처할 수 있는 운영이 요구된다. 본 논문은 태양광 발전량 데이터를 표본으로 하여 예측 발전량을 추정하여 에너지 관리하는 방안을 제안한다. 실시간으로 예측된 배터리 충전 전력과 배터리 랙 총 충전 전력을 비교하여 충전 전력을 조절하는 모형을 적용한다. 그 결과로 배터리의 발열 억제 및 충방전율을 유지시켜 에너지저장시스템의 에너지 저장을 안정적으로 높일 수 있다.

PSCAD/EMTDC를 이용한 전지전력저장시스템의 수리모형에 관한 연구 (A Study on Mathematical Modeling of Battery Energy Storage Systems using PSCAD/EMIDC)

  • 김용상;김재언;노대석;김재철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 D
    • /
    • pp.1035-1037
    • /
    • 1997
  • This paper deals with the mathematical modeling of battery energy storage systems interconnected with the distribution system. This battery model takes account of self-discharge, battery storage capacity, internal resistance and overvoltage. The model components are decided by using an approximation technique and experimental results. This model can be used to evaluate battery performance of battery energy storage systems interconnected with distribution system.

  • PDF