• Title/Summary/Keyword: Battery case

Search Result 386, Processing Time 0.026 seconds

MINIMUM BATTERY ENERGY IN THE SURVIVAL MODE FOR THE COMS SPACECRAFT

  • Koo, Ja-Chun;Ra, Sung-Woong
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.96-99
    • /
    • 2008
  • The MRE (Monitoring Reconfiguration Electronics) board included inside the SCU (Spacecraft Computer Unit) in the COMS (Communication, Ocean and Meteorological Satellite) spacecraft is used to monitor the battery voltage and to detect a battery under voltage (low battery capacity) or a battery overvoltage (overcharge). In case of alarm detection, a reconfiguration is initiated by the MRE board. The MRE configures the overall spacecraft in the survival mode to protect the Li-Ion (lithium ion) battery from overcharge and over discharge. For the EPS (Electrical Power Subsystem) point of view, the survival mode can be trigged from hardware wired thresholds. The aim of this paper to provide and to justify the low and high threshold levels which are associated to the MRE battery voltage monitoring. The MRE trig guarantees minimum battery energy to available for the required 48 hours autonomy duration of the spacecraft after MRE trig in the survival mode.

  • PDF

Alternating Battery Discharge Method Using Discharge Time Balancing (방전 시간 밸런싱을 사용한 배터리 교대 방전 기법)

  • Lee, Jong-Bae;Lee, Seongsoo
    • Journal of IKEEE
    • /
    • v.19 no.3
    • /
    • pp.366-370
    • /
    • 2015
  • This paper proposes an alternating battery discharge method by balancing discharge time of battery cells, which significantly increases battery lifetime. In the conventional method, several battery cells are alternately discharged to make battery recovery effect, and this increases battery lifetime. In this case, there are some overlap intervals where several battery cells are ON to avoid system power cut-off, but this makes several problems due to the voltage differences of battery cells. To mitigate these problems, discharge time of battery cells are controlled to make battery cell voltages as equal as possible. Measurements show that the battery lifetime is exxtended by 19.2% in the proposed method.

A Study on the Economic Analysis of Introducing Battery-Based Eco Bus: Case Study of Daegu City, South Korea (친환경 버스 도입에 따른 경제성 분석에 관한 연구 (대구광역시 중심으로))

  • Bak, Jae Seok;Kim, Sung-Yul;Kim, Dong-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.3
    • /
    • pp.343-351
    • /
    • 2018
  • Renewable energy sources has drawn considerable attention as clean energy sources because of changing public attitudes regarding greenhouse gas and fine dust. Recently, in this respect, the government provides the drivers of electric vehicles with various benefits such as tax reduction, financial incentives and free parking from the public to the private sector. Plug-in electric vehicles are the most common in the private sector. Otherwise, different types of battery-based buses in the public sector are being developed, and there are three main types of charging: plug-in, battery swapping and wireless. Therefore, economic assessment of charging types in each bus route is required in order to facilitate the use of battery-based buses instead of the existing CNG buses. In this paper, net present value(NPV) and B/C ratio of charging types are evaluated in consideration of the bus schedule, the cost of charging station, and the life cycle of battery, etc. per each bus route. In case study, main bus routes in Daegu City are simulated with the proposed evaluation method to validate the eco-bus project.

A Study on the V2G Application using the Battery of Electric Vehicles under Smart Grid Environment (스마트그리드 환경에서 전기자동차 배터리를 이용한 V2G의 활용방안에 관한 연구)

  • Choi, Jin-Young;Park, Eun-Sung
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.1
    • /
    • pp.40-45
    • /
    • 2014
  • This study examines the system and process of battery stored energy in vehicles and suggest the effective area for the use of V2G(vehicle-to-grid) from Jeju Smart Grid Demonstration Project. V2G means technology of electric power transmission from the battery of electric-drive vehicles to state grid. As for the increasing of effectiveness for demand-side control, V2G is a very good alternative. In the U.S., the utilization of electric vehicles is under 40% on average. In this case, we can use he battery of electric vehicle as role of frequency regulation or generator of demand-side resource. V2G, which is the element of Smart Transportation, consists of electric vehicle battery, BMS(battery management system), OBC(on-board charger), charging infrastructure, NOC(network operating center) and TOC(total operation center). V2G application has been tested for frequency regulation to secure the economical efficiency in the United States. In this case, the battery cycle life is not verified its disadvantage. On the other hand, Demand Response is required by low c-rate of battery in electric vehicle and It can be small impact on the battery cycle life. This paper concludes business area of demand response is more useful than frequency regulation in V2G application of electric vehicles in Korea. This provides the opportunity to create a new business for power grid administrator with VPP(virtual power plant).

A Study on the Application of Phase Change Material for Electric Vehicle Battery Thermal Management System using Dymola (전기자동차 배터리팩 열관리시스템에서 상변화물질 적용에 관한 고찰)

  • Choi, Chulyoung;Choi, Woongchul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1889-1894
    • /
    • 2017
  • Global automobile manufacturers are developing electric vehicles (EVs) to eliminate the pollutant emissions from internal combustion vehicles and to minimize fossil fuel consumptions for the future generations. However, EVs have a disadvantage of shorter traveling distance than that of conventional vehicles. To answer this shortfall, more batteries are installed in the EV to satisfy the consumer expectation for the driving range. However, as the energy capacity of the battery mounted in the EV increases, the amount of heat generated by each cell also increases. Naturally, a better battery thermal management system (BTMS) is required to control the temperature of the cells efficiently because the appropriate thermal environment of the cells greatly affects the power output from the battery pack. Typically, the BTMS is divided into an active and a passive system depending on the energy usage of the thermal management system. Heat exchange materials usually include gas and liquid, semiconductor devices and phase change material (PCM). In this study, an application of PCM for a BTMS was investigated to maintain an optimal battery operating temperature range by utilizing characteristics of a PCM, which can accumulate large amounts of latent heat. The system was modeled using Dymola from Dassault Systems, a multi-physics simulation tool. In order to compare the relative performance, the BTMS with the PCM and without the PCM were modeled and the same battery charge/discharge scenarios were simulated. Number of analysis were conducted to compare the battery cooling performance between the model with the aluminum case and PCM and the model with the aluminum case only.

Economic Evaluation by Compared Battery Energy Storage System(BESS) and Conventional Combined Cycle of power Generation Cost (복합화력발전시스템과의 발전원가 비교에 의한 전지전력저장시스템의 경제성 분석)

  • Kim, Eung-Sang;Kim, Ji-Won
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.3
    • /
    • pp.241-246
    • /
    • 1999
  • This paper describes the economic evaluation of battery energy storage system(BESS) for the domestic application. Application target is decided on conventional combined cycle of domestic and we analyzed economics that compared conventional combined cycle with power generation cost in development and the commercialized in case that establish it on utility and customer, urban and rural. The result shows that about the same conventional combined cycle of Anyang, Bundang and Pyungtak but more economical than seoincheon conventional combined cycle. And, in case of capacity enlargment and using the maintenance free battery more economical than conventional system.

  • PDF

A Study on Optimal Operation Strategy for Mild Hybrid Electric Vehicle Based on Hybrid Energy Storage System

  • Bae, SunHo;Park, Jung-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.631-636
    • /
    • 2018
  • This paper proposed an optimal operation strategy for a hybrid energy storage system (HESS) with a lithium-ion battery and lead-acid battery for mild hybrid electric vehicles (mild HEVs). The proposed mild HEV system is targeted to mount the electric motor and the battery to a conventional internal combustion engine vehicle. Because the proposed mild HEV includes the motor and energy storage device of small capacity, the system focuses on low system cost and small size. To overcome these limitations, it is necessary to use a lead acid battery which is used for a vehicle. Thus, it is possible to use more energy using HESS with a lithium battery and a lead storage battery. The HESS, which combines the lithium-ion battery and the secondary battery in parallel, can achieve better performance by using the two types of energy storage systems with different characteristics. However, the system requires an operation strategy because accurate and selective control of the batteries for each situation is necessary. In this paper, an optimal operation strategy is proposed considering characteristics of each energy storage system, state-of-charge (SOC), bidirectional converters, the desired output power, and driving conditions in the mild HEV system. The performance of the proposed system is evaluated through several case studies with respect to energy capacity, SOC, battery characteristic, and system efficiency.

A study on the auto-charging circuit of the battery power units using trigger characteristics of semiconductor device (반도체 스위칭 소자의 트리거 특성을 이용한 배터리 자동 충전회로에 관한 연구)

  • 김영민;황종선;박성진;임종연;송승호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.519-522
    • /
    • 2001
  • Recently, the battery charging technology and reducing technology of harmonics on AC input line are rising importantly according to increasing electrical facilities that it has been replaced battery with emergency power. In this study, I proposed that an auto-charging circuit of battery has low cost with simple-construction circuit, relative, harmonics reduction with diode tap-change method, high reliability of system for using characteristics of thyristor switching. In case of this circuit, convenience and reliability of maintenance of battery power units were more improved. 1 think that it is resulted in effect of prevention to shortening of battery life from over-charging and over-discharging and decrease of harmonics obstacle on AC input line.

  • PDF

Analysis of Car Fire Cases Related to a Lithium Battery and Cause Investigation Technique (리튬배터리와 관련된 차량화재 사례 및 원인조사 기법 분석)

  • Lee, Eui-Pyeong
    • Fire Science and Engineering
    • /
    • v.33 no.2
    • /
    • pp.98-106
    • /
    • 2019
  • As lithium batteries have been used for car navigation systems and as the second battery for black boxes, lithium battery-related car fires have often occurred. In the case a lithium battery is the fire origin, a fire investigation technique has not been established to determine if a battery ignites or whether the lithium battery is damaged by fire. This study introduced car fire cases related to lithium batteries, analyzed the causes of a fire of a lithium battery, and proposed fire investigation techniques to objectively determine if a lithium battery ignites or whether a lithium battery is damaged by fire after external ignition.

A Study on the Thermal Characteristics of Cooling System for Securing Battery Stability in Electric Vehicle (전기자동차 배터리 안정성 확보를 위한 냉각장치 열특성 연구)

  • Otgonpurev, Tuul;Ko, Gwang Soo;Park, Youn Cheol
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.16 no.2
    • /
    • pp.7-12
    • /
    • 2020
  • The battery of an electric vehicle is a key part of the energy supply to operate the vehicles. There are many factors affecting battery life such as charging method, discharge rate, and ambient temperature those are requires systematic monitoring and management. To solve the issues like environmental problems and fuel consumption reduction the battery needs more performance improvement. In this study, it was analyzed the thermal characteristics and securing battery stability for electric vehicle battery cooling system. The simulation test was operated using GT-suite software with several conditions like cooling capacity 1, 2 and 4 kW, cooling flow rate 5, 10, 20 and 30 LPM, and battery initial temperatures 40, 35, and 30℃ at the temperature of ambient 25℃. The results shown that the case of cooling flow rate at 20 LPM was most efficient among all above conditions.