• Title/Summary/Keyword: Battery Thermal Management

Search Result 55, Processing Time 0.036 seconds

Effect of Coolant Flow Characteristics in Cooling Plates on the Performance of HEV/EV Battery Cooling Systems (하이브리드/전기 자동차 배터리 냉각 시스템의 냉각수 유동 특성이 냉각 성능에 미치는 영향에 대한 해석적 연구)

  • Oh, Hyunjong;Park, Sungjin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.179-185
    • /
    • 2014
  • Average temperature and temperature uniformity in a battery cell are the important criteria of the thermal management of the battery pack for hybrid electric vehicles and electric vehicles (HEVs and EVs) because high power with large size cell is used for the battery pack. Thus, liquid cooling system is generally applied for the HEV/EV battery pack. The liquid cooling system is made of multiple cooling plates with coolant flow paths. The cooling plates are inserted between the battery cells to reject the heat from batteries to coolant. In this study, the cooling plate with U-shaped coolant flow paths is considered to evaluate the effects of coolant flow condition on the cooling performance of the system. The counter flow and parallel flow set up is compared and the effect of flow rate is evaluated using CFD tool (FLUENT). The number of counter-flows and flow rate are changed and the effect on the cooling performance including average temperature, differential temperature, and standard deviation of temperature are investigated. The results show that the parallel flow has better cooling performance compared with counter flow and it is also found that the coolant flow rate should be chosen with the consideration of trade-off between the cooling performance and pressure drop.

Stabilization of Thermo Electromotive Force of Power Type Shunt Resistor for Mass Storage Secondary Battery Management System (대용량 이차전지 관리 시스템용 전력형 션트저항의 열기전력 안정화)

  • Kim, Eun Min;Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.6
    • /
    • pp.376-380
    • /
    • 2017
  • In this paper, we prepared a metal alloy resistor with stable thermal electro motive force (thermal EMF) as well as a low temperature coefficient of resistance (TCR) by adjusting the manganese proportion from 3 to 12 wt% in the Cu-Mn-Ni alloy. Composition of the fabricated metal alloy was investigated using energy dispersive X-ray (EDX) analysis. The TCR of each sample was measured as 44.56, 40.54, 35.60, and 31.56 ppm for Cu-3Mn-2Ni, Cu-5Mn-2Ni, Cu-10Mn-2Ni, and Cu-12Mn-2Ni, respectively. All the resistor samples were available for the F grade (${\pm}1%$ of the allowable error of resistance) high-precision resistor. All the samples satisfied the baseline of high thermal EMF (under 3 mV at $60^{\circ}C$); however, Cu-3Mn-2Ni and Cu-5Mn-2Ni satisfied the baseline of low thermal EMF (under 0.3 mV at $25^{\circ}C$). We were thus able to design and fabricate the metal alloy resistor of Cu-3Mn-2Ni and Cu-5Mn-2Ni to have low TCR and stable thermal EMF at the same time.

Predictions of the Cooling Performance on an Air-Cooled EV Battery System According to the Air Flow Passage Shape (공기 유로 형상에 따른 공랭식 전기자동차 배터리 시스템의 냉각 성능 예측)

  • Jeong, Seok Hoon;Suh, Hyun Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.12
    • /
    • pp.801-807
    • /
    • 2016
  • This paper aims to compare and study the cooling performance of a battery system in accordance with the inlet and outlet geometry of the air passage in an EV. The arrangement and the heat source of the battery module were fixed, and the inlet/outlet area and its geometry were varied with the analysis of the cooling performance. The results of this study provide suggestions for the air flow stream line inside of a battery, the velocity field, and the temperature distributions. It was confirmed that the volume flow rate of air should be over $400m^3/h$, in order to satisfy conditions under $50^{\circ}C$, which is the limit condition for stable operation. It was also revealed that the diffuser outlet geometry can improve the cooling performance of battery system.

Design of an Off Grid type High efficiency Solar charging system Using MATLAB/Simulink (MATLAB/Simulink를 이용한 오프그리드형 고효율 태양광 충전 시스템 설계)

  • Gebreslassie, Maru Mihret;kim, Min;Byun, Gi-sig;Kim, Gwan-hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.735-737
    • /
    • 2017
  • An Off grid or remote solar electric systems are an energy supply to our home or to our companies without the utility of Grid at all. Off grid solar systems are very important for those who live in remote locations especially for developing countries where getting the electric grid is extremely expensive, inconvenient or for those who doesn't need to pay a monthly bill with the electric bill in general. The main critical components of any solar power system or renewable energy harvesting systems are the energy storage systems and its charge controller system. Energy storage systems are the essential integral part of a solar energy harvesting system and in general for all renewable energy harvesting systems. To provide an optimal solution of both high power density and high energy density at the same time we have to use hybrid energy storage systems (HESS), that combine two or more energy storage technologies with complementary characteristics. In this present work, design and simulation we use two storage systems supercapacitor for high power density and lithium based battery for high energy density. Here the system incorporates fast-response supercapacitors to provide power to manage solar smoothing and uses a battery for load shifting. On this paper discuss that the total energy throughout of the battery is much reduced and the typical thermal stresses caused by high discharge rate responses are mitigated by integrating supercapacitors with the battery storage system. In addition of the above discussion the off grid solar electric energy harvesting presented in this research paper includes battery and supercapacitor management system, MPPT (maximum power point tracking) system and back/boost convertors. On this present work the entire model of off grid electric energy harvesting system and all other functional blocks of that system is implemented in MATLAB Simulink.

  • PDF

Development of Fuel Cell/Battery Hybrid Vehicle (연료전지/배터리 하이브리드 차량 개발)

  • Son Yeong Jun;Park Gu Gon;Im Seong Dae;Eom Seok Gi;Yang Tae Hyeon;Yun Yeong Gi;Lee Won Yong;Kim Chang Su
    • 한국전기화학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.103-110
    • /
    • 2005
  • Fuel cell systems are consisted of various parts, for example fuel cell stack, fuel supplier, electrical converters, controllers and so on. Each components of system should have appropriate specification for their applications as well as simplicity. Because thermal load can be managed simply by using fans without any water cooling system, the air-cooled PEMFC is widely used in sub kW and around 1kW systems. The performance of an air-cooled system is highly dependent on ambient temperature and humidity. In this paper, the air-cooled PEMFC systems are developed and investigated to study the operating characteristics in the aspect of the thermal and water coupled management by the control of the axial fans and compressors. Various experiments were also conducted to get the cell voltage distribution, the relative humidity of the reactant gas and the thermal management by axial cooling fans, which cannot be observed in single cell experiment. After then, as practical applications, portable fuel cell system and a hybrid electric cart were successfully integrated and operated by using this air-cooled stack.

  • PDF

Advances on heat pump applications for electric vehicles

  • Bayram, Halil;Sevilgen, Gokhan;Kilic, Muhsin
    • Advances in Automotive Engineering
    • /
    • v.1 no.1
    • /
    • pp.79-104
    • /
    • 2018
  • A detailed literature review is presented for the applications of the heat pump technologies on the electric vehicles Heating, Ventilation and Air Conditioning (HVAC) system. Due to legal regulations, automotive manufacturers have to produce more efficient and low carbon emission vehicles. Electric vehicles can be provided these requirements but the battery technologies and energy managements systems are still developing considering battery life and vehicle range. On the other hand, energy consumption for HVAC units has an important role on the energy management of these vehicles. Moreover, the energy requirement of HVAC processes for different environmental conditions are significantly affect the total energy consumption of these vehicles. For the heating process, the coolant of internal combustion (IC) engine can be utilized but in electric vehicles, we have not got any adequate waste heat source for this process. The heat pump technology is one of the alternative choices for the industry due to having high coefficient of performance (COP), but these systems have some disadvantages which can be improved with the other technologies. In this study, a literature review is performed considering alternative refrigerants, performance characteristics of different heat pump systems for electric vehicles and thermal management systems of electric vehicles.

Numerical Study on Thermal Performances of Multi Heat Source Heating System Using Butane for Electric Vehicle (전기자동차용 부탄 연료 복합열원 히팅시스템의 열적 성능에 관한 수치적 연구)

  • Bang, You-Ma;Seo, Jae-Hyeong;Patil, Mahesh Suresh;Cho, Chong-Pyo;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.725-731
    • /
    • 2016
  • This study numerically investigates the thermal performance of a 2.0-kW butane-based combustion heating system for an electric vehicle under cold conditions. The system is used for cabin space heating and coolant-based battery thermal management. ANSYS CFX 17 software was used for parametric analysis. The mass flow rates of cold air and coolant were varied, and their effects were compared. The numerical results were validated with theoretical studies, which showed an error of 0.15%. As the outside air mass flow rates were increased to 0.005, 0.01, and 0.015 kg/s, the cabin supply air temperature decreased continuously while the coolant outlet temperature increased. When the coolant mass flow rates were increased to 0.005, 0.01 and 0.015 kg/s, the air temperature increased while the coolant outlet temperatures decreased. The optimal mass flow rates are discussed in a consideration of the requirements for high cabin heating capacity and efficient battery thermal management.

Numerical Study on the Heat Transfer Characteristics of 360 Wh Li-ion Battery Pack for Personal Mobility (360 Wh급 퍼스널 모빌리티용 리튬이온 배터리 팩의 열전달 특성에 관한 연구)

  • Kim, Dae-Wan;Seo, Jae-Hyeong;Kim, Hak-Min;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.8
    • /
    • pp.1-7
    • /
    • 2017
  • This study numerically evaluates the heat transfer characteristics of a 360-Wh Li-ion battery pack. The analysis was done in ANSYS CFX using different cell arrangements, cell holders, and case materials for a personal mobility device program. A total of four cases of cell arrangements were considered, along with various materials for both the cell holder and the case, such as polypropylene, aluminum, and magnesium alloy. Out of the four cell arrangements, model 2 showed the best heat transfer performance, while aluminum showed the best heat transfer performance for the cell holder and case.

Implementation of Battery Management System for Li-ion Battery Considering Self-energy Balancing (셀프에너지 밸런싱을 고려한 리튬이온전지의 Battery Management System 구현)

  • Kim, Ji-Myung;Lee, Hu-Dong;Tae, Dong-Hyun;Ferreira, Marito;Park, Ji-Hyun;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.585-593
    • /
    • 2020
  • Until now, 29 fire accidents have occurred; 22 of them were caused by the interconnection of renewable energy sources that occurred during the rest period after the lithium-ion battery had been fully charged regardless of the seasons. The fire accidents of ESS were attributed to thermal runaway due to the overcharging of a few cells with the phenomenon of self-energy balancing, which is unintentional current flow from cells with a high SOC to the low cells if the SOC condition of each cell connected in parallel is different. Therefore, this paper proposes a novel configuration and operation algorithm of the BMS to prevent the self-energy balancing of ESS and presents a hybrid SOC estimation algorithm. From the test results of the self-energy balancing phenomenon between aging and normal cells based on the proposed algorithm and BMS, it was confirmed the possibility of self-energy balancing, which is unintentional current flow from cells with a high SOC to cells with a low SOC. In addition, the proposed configuration of the BMS is useful and practical to improve the safety of lithium-ion batteries because the BMS can reliably disconnect a parallel connection of the cells if the self-energy balancing current becomes excessively high.

Operation Performance of a Polymer Electrolyte Fuel Cell Cogeneration System for Residential Application (가정용 고분자연료전지 시스템의 운전 방법에 따른 성능 비교)

  • Lee, W.Y.;Jeong, K.S.;Yu, S.P.;Um, S.K.;Kim, C.S.
    • Journal of Hydrogen and New Energy
    • /
    • v.16 no.4
    • /
    • pp.364-371
    • /
    • 2005
  • Fuel cell systems(FCS) have a financial and environmental advantage by providing electricity at a high efficiency and useful heat. For use in a residence, a polymer electrolyte fuel cell system(PEFCS) with a battery pack and a hot water storage tank has been modelled and simulated. The system is operated without connection to grid line. Its electric conversion efficiency and heat recovery performance are highly dependent on operation strategies and also on the seasonal thermal and electric load pattern. The output of the fuel cell is controlled stepwise as a function of the state of the battery and/or the storage water tank. In this study various operation strategies for cogeneration fuel cell systems are investigated. Average fuel saving rates at different seasons are calculated to find proper load management strategy. The scheme can be used to determine the optimal operating strategies of PEFCS for residential and building applications.