• Title/Summary/Keyword: Battery Power Control

Search Result 775, Processing Time 0.032 seconds

Automotive HID Ballast System Using Planar Transformer (평면 변압기를 이용한 자동차용 고압방전등 안정기 시스템)

  • Lee, Jae-Hak
    • 전자공학회논문지 IE
    • /
    • v.43 no.3
    • /
    • pp.22-27
    • /
    • 2006
  • This paper presents the control system of high-efficiency automotive 35W metal-halide lamp ballast using the new control method and planar transformer. In this paper, the electronic ballast is designed so that digital control method by microcontroller can be applied to the electronic ballast for the lamp requirement and peripheral environment in order that metal-halide lamp, which has the complicated transient features, is to be applied to the automobile even if it has superior features in brightness, color rendering, light efficiency, and lifespan compared to the conventional halogen lamp. Also, the efficiency increase of the ballast is devised by being varied the switching frequency of Flyback Converter following the battery input voltage of the automobile. Being designed for high-frequency switching transformer of converter in planar form, reduction of loss, weight, overall size are realized and efficient power control in the automobile that had the limited energy and the limited space of battery is devised. The results of the proposed system is verified through various experiment results.

A Study on Control Algorithms of Efficiency Improvement Device for PV System Operation using Li-ion Battery (리튬이온전지를 이용한 태양광전원의 운용효율향상장치의 제어 알고리즘에 관한 연구)

  • Park, Ji-Hyun;Kim, Byung-Mok;Lee, Hu-Dong;Nam, Yang-Hyun;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.590-597
    • /
    • 2018
  • Recently, the installation of PV systems has been increasing due to the worldwide interest in eco-friendly and renewable solar energy. On the other hand, the output power of PV systems is influenced strongly by the surrounding weather conditions. In addition, the entire operation efficiency of PV systems may be decreased considerably even if only some of the PV modules are in the shade. In other words, the existing control method at which strings with modules in series are connected to an inverter may be not operated in the case that the string voltage in partial shade is lower than the operating range of the grid connected inverter. To overcome these problems, this paper proposes an operation efficiency improvement device of a PV system using a Li-ion battery, which can compensate for the voltage of each string in the PV system when it is partially shaded. In addition, this paper presents the modeling of the operation efficiency improvement device, including PV strings, Li-ion battery and a 3-Phase grid inverter based on the PSIM S/W. From the simulation results, it was confirmed that the proposed control method can improve the operating efficiency of PV systems by compensating for the string voltage with partial shade.

Characteristic Research of Electromechanical Actuation System for Launch Vehicle Thrust Vector Control (발사체 추력벡터제어용 전기-기계식 구동장치시스템 특성 연구)

  • Min, Byeong-Joo;Choi, Hyung-Don;Kang, E-Sok
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.164-170
    • /
    • 2007
  • In this paper, the development results of electromechanical TVC actuation system is described in the aspect of design, analysis, manufacturing and test. The kinds of prime power for TVC actuation system is classified by the variety of propulsion system of launch vehicle. The electric power by battery is the sole candidate for prime power of TVC actuation system at the view point of feasible domestic infra technologies for the present. The characteristic analysis study is performed between electromechanical and electrohydraulic actuation system with respect to power efficiency, performance and weight efficiency. The electromechanical actuation system has superiority of power and weight efficiency according to less opportunity of power conversion process.

  • PDF

Development of Hardware-in-the-loop Simulator for Spacecraft Attitude Control using thrusters

  • Koh, Dong-Wook;Park, Sang-Young;Choi, Kyu-Hong
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.35.3-36
    • /
    • 2008
  • The ground-based spacecraft simulator is a useful tool to realize various space missions and satellite formation flying in the future. Also, the spacecraft simulator can be used to develop and verify new control laws required by modern spacecraft applications. In this research, therefore, Hardware-in-the-loop (HIL) simulator which can be demonstrated the experimental validation of the theoretical results is designed and developed. The main components of the HIL simulator which we focused on are the thruster system to attitude control and automatic mass-balancing for elimination of gravity torques. To control the attitude of the spacecraft simulator, 8 thrusters which using the cold gas (N2) are aligned with roll, pitch and yaw axis. Also Linear actuators are applied to the HIL simulator for automatic mass balancing system to compensate for the center of mass offset from the center of rotation. Addition to the thruster control system and Linear actuators, the HIL simulator for spacecraft attitude control includes an embedded computer (Onboard PC) for simulator system control, Host PC for simulator health monitoring, command and post analysis, wireless adapter for wireless network, rate gyro sensor to measure 3-axis attitude of the simulator, inclinometer to measure horizontality and battery sets to independently supply power only for the simulator. Finally, we present some experimental results from the application of the controller on the spacecraft simulator.

  • PDF

Development of a Hardware-in-the-loop Simulator for Spacecraft Attitude Control Using Thrusters

  • Koh, Dong-Wook;Park, Sang-Young;Kim, Do-Hee;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.1
    • /
    • pp.47-58
    • /
    • 2009
  • In this study, a Hardware-In-the-Loop (HIL) simulator using thrusters is developed to validate the spacecraft attitude system. To control the attitude of the simulator, eight cold gas thrusters are aligned with roll, pitch and yaw axis. Also linear actuators are applied to the HIL simulator for automatic mass balancing to compensate the center of mass offset from the center of rotation. The HIL simulator consists of an embedded computer (Onboard PC) for simulator system control, a wireless adapter for wireless network, a rate gyro sensor to measure 3-axis attitude of the simulator, an inclinometer to measure horizontal attitude, and a battery set to supply power for the simulator independently. For the performance test of the HIL simulator, a bang-bang controller and Pulse-Width Pulse-Frequency (PWPF) modulator are evaluated successfully. The maneuver of 68 deg. in yaw axis is tested for the comparison of the both controllers. The settling time of the bang -bang controller is faster than that of the PWPF modulator by six seconds in the experiment. The required fuel of the PWPF modulator is used as much as 51% of bang-bang controller in the experiment. Overall, the HIL simulator is appropriately developed to validate the control algorithms using thrusters.

DEVELOPMENT OF INVERTER AND POWER CAPACITORS FOR MILD HYBRID VEHICLE (MHV) - TOYOTA "CROWN"

  • Shida, Y.;Kanda, M.;Ohta, K.;Furuta, S.;Ishii, J.
    • International Journal of Automotive Technology
    • /
    • v.4 no.1
    • /
    • pp.41-45
    • /
    • 2003
  • The 42V Mild Hybrid System has been released into market by Toyota for the first time in the world in 2001. The set-up employs an inverter unit to control the motor/generator (MG) electronically. The driving system called such as Toyota Mild Hybrid System (TMHS) has additional new functions to conventional internal combustion engines. When stopping vehicle, the engine stops promptly. When starting vehicle, by releasing the brake pedal MG starts the vehicle at the same time (EV-driving mode). When stepping on the accelerator pedal, or after a given period of time the engine firing occurs and the engine-driving mode starts. When running by motor, the power is supplied to the motor from 36V battery through the inverter. High outputs and instant responses are required for Inverter. At the same time, the compact volume is required to fit into the limited space of the engine room. The compact size and high output are also required to Power Capacitor used for this inverter. The power capacitors has been newly developed, shaped in "flat" type, suitably for the inverter. The points of developments on inverter and power capacitor are described in this paper.his paper.

Development of High Efficiency DC-DC Converter Circuit Topology for Renewable Energy Application (신재생에너지 연계용 고효율 승압형 DC-DC Converter 회로 토폴로지 개발)

  • Jung, Tae-Uk;Kim, Ju-Yong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.1
    • /
    • pp.105-111
    • /
    • 2010
  • This article studies the design of DC-DC Converter to convert low-voltage energy sources generated from renewable power like battery power, photovoltaic power, or fuel cells into high-voltage ones. The circuit topology of H-bridge Converter to convert input voltage, 24[V], into out voltage, 400[V], was realized through applying phase shift angle control so as to manage electric power and voltage in the output side. The advantages of the converter system suggested are the low cost as well as current stress reduction, high efficiency, reliability, and simplified maintenance. It is also found that the system is highly useful to produce residential electric power.

A Development of Surface Temperature Monitoring System for Underground Tunnel Cable Joint using Wireless Sensor (무선센서를 이용한 지하전력구의 케이블 접속함 표면온도감시시스템 개발)

  • Kim, Young-Il;Song, Jae-Ju;Shin, Jin-Ho;Yi, Bong-Jae;Cho, Seon-Ku
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.11
    • /
    • pp.1879-1884
    • /
    • 2007
  • In the electric power industry, it is important that the supply of energy must be guaranteed. Many power utilities control and supervise the transmission line to avoid power failures. In case of underground tunnel, some troubles are reported in cable joint. To stabilize the power, it is needed to monitor the cable joint. Many researches of cable joint monitoring have been going on by partial discharge measurement and temperature measurement using optical cable. These methods need much cost to install and maintain, so it is only used in critical transmission line. In this research, we use wireless sensor technology, because of its low cost and easy installation. We develop the temperature monitoring system for cable joint. Temperature sensor is installed on the surface of cable joint and sends data to server through router node using wireless network. Generally Ad hoc routing is searched in wireless network. However, in this research, we design the static linear routing mechanism, which is suitable for electric power line monitoring and analyze the life time of the sensor node by measuring the amount of the battery consumption.

Design and Parallel Operation of 30 kW SiC MOSFET-Based High Frequency Switching LLC Converter With a Wide Voltage Range for EV Fast Charger (전기자동차 급속충전기용 넓은 전압 범위를 갖는 30kW급 SiC MOSFET 기반 고속 스위칭 LLC 컨버터 설계 및 병렬 운전)

  • Lee, Gi-Young;Min, Sung-Soo;Park, Su-Seong;Cho, Young-Chan;Lee, Sang-Taek;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.2
    • /
    • pp.165-173
    • /
    • 2022
  • The electrification trend of mobility increases every year due to the development of power semiconductor and battery technology. Accordingly, the development and distribution of fast chargers for electric vehicles (EVs) are in demand. In this study, we propose a design and implementation method of an LLC converter for fast chargers. Two 15 kW LLC converters are configured in parallel to have 30 kW rated output power, and the control algorithm and driving sequence are designed accordingly and verified. In addition, the improved power conversion efficiency is confirmed through zero-voltage switching (ZVS) of the LLC converter and reduction of turn-off loss through snubber capacitors. The implemented 30 kW LLC converters show a wide output voltage range of 200-950 V. Experiments applying various load conditions verify the converter performance.

Power efficient SN implementation using variable voltage (Variable Voltage을 사용한 저전력 센서 성능 향상 메커니즘 구현)

  • Lee Kyung-Ho;Lim Kyung-Soo;Han Kyu-Ho;An Sun-Shin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06d
    • /
    • pp.196-198
    • /
    • 2006
  • Ubiquitous Computing 시대가 도래하면서 USN은 다양한 분야에 적용되고 결국 지능형 유비쿼터스 센서 네트워크로 진화될 것이다. 센서네트워크는 네트워크를 구성하는 일정지역에 많은 수의 센서 노드가 배치되는 만큼 그에 따른 가장 큰 제약조건은 유한한 battery수명이다. 따라서 가용에너지가 작은 sensor node를 에너지 효율성을 고려하여 제작해서 적은 에너지 소모를 가지는 long-life sensor node를 만든다면 보다 현실적인 USN 실현에 가까이 갈수 있다. 여기에 우리는 DVS(Dynamic Voltage Sealing)라는 scheme을 기반으로 power-efficiency sensor node을 제작하였다. Variable Voltage을 CPU에 공급하거나 사용하지 않는 state에 있는 경우의 RF transceiver, clock, sensor등을 on/off control함으로서 성능향상을 가할 수 있다.

  • PDF