• Title/Summary/Keyword: Battery Power Control

Search Result 775, Processing Time 0.028 seconds

LLC Resonant Converter with Auxiliary Switches Operating Over A Wide Output Voltage Range (넓은 입·출력전압 범위에서 제어 가능한 보조스위치 적용 LLC 공진컨버터)

  • Lee, Ji-Cheol;Kim, Min-Ji;Oh, Jae-Sung;Kim, Eun-Soo;Kook, Yoon-Sang
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.4
    • /
    • pp.256-264
    • /
    • 2018
  • This paper proposes a three-bridge LLC resonant converter with auxiliary switches for a wide output voltage control range. This converter can be controlled in two ways to achieve a wide controllable output voltage control range of $V_o$ to $3V_o$. The first control mechanism is achieved through the pulse width modulation (PM) of the auxiliary switches and primary switching devices, while the second control mechanism is achieved through the frequency modulation (FM) of the primary switching devices that are configured to operate in the full-bridge switching mode when the auxiliary switches are turned off. The feasibility of using the proposed converter is verified by the results of an experiment with a 2kW prototype.

Design and Dynamic Performance Analysis of a Stand-alone Microgrid - A Case Study of Gasa Island, South Korea

  • Husein, Munir;Hau, Vu Ba;Chung, Il-Yop;Chae, Woo-Kyu;Lee, Hak-Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1777-1788
    • /
    • 2017
  • This paper presents the design and dynamic analysis of a stand-alone microgrid with high penetration of renewable energy. The optimal sizing of various components in the microgrid is obtained considering two objectives: minimization of levelized cost of energy (LCOE) and maximization of renewable energy penetration. Integrating high renewable energy in stand-alone microgrid requires special considerations to assure stable dynamic performance, we therefore develop voltage and frequency control method by coordinating Battery Energy Storage System (BESS) and diesel generators. This approach was applied to the design and development of Gasa Island microgrid in South Korea. The microgrid consists of photovoltaic panels, wind turbines, lithium-ion batteries and diesel generators. The dynamic performance of the microgrid during different load and weather variations is verified by simulation studies. Results from the real microgrid were then presented and discussed. Our approach to the design and control of microgrid will offer some lessons in future microgrid design.

Analysis of Viterbi Algorithm for Low-power Wireless Sensor Network (저전력 무선 센서네트워크를 위한 비터비 알고리즘의 적용 및 분석)

  • Park, Woo-Jun;Kim, Keon-Wook
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.6 s.360
    • /
    • pp.1-8
    • /
    • 2007
  • In wireless sensor network which uses limited battery, power consumption is very important factor for the survivality of the system. By using low-power communication to reduce power consumption, error rate is increased in typical conditions. This paper analyzes power consumption of specific error control coding (ECC) implementations. With identical link quality, ECC provides coding gain which save the power for transmission at the cost of computing power. In sensor node, transmit power is higher than computing power of Micro Controller Unit (MCU). In this paper, Viterbi algerian is applied to the low-transmit-power sensor networks in terms of network power consumption. Practically, Viterbi algorithm presents 20% of reduction of re-transmission in compared with Auto Repeat Request (ARQ) system. Furthermore, it is observed that network power consumption is decreased by almost 18%.

Research and Experimental Implementation of a CV-FOINC Algorithm Using MPPT for PV Power System

  • Arulmurugan, R.;Venkatesan, T.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1389-1399
    • /
    • 2015
  • This research suggests maximum power point tracking (MPPT) for the solar photovoltaic (PV) power scheme using a new constant voltage (CV) fractional order incremental conductance (FOINC) algorithm. The PV panel has low transformation efficiency and power output of PV panel depends on the change in weather conditions. Possible extracting power can be raised to a battery load utilizing a MPPT algorithm. Among all the MPPT strategies, the incremental conductance (INC) algorithm is mostly employed due to easy implementation, less fluctuations and faster tracking, which is not only has the merits of INC, fractional order can deliver a dynamic mathematical modelling to define non-linear physiognomies. CV-FOINC variation as dynamic variable is exploited to regulate the PV power toward the peak operating point. For a lesser scale photovoltaic conversion scheme, the suggested technique is validated by simulation with dissimilar operating conditions. Contributions are made in numerous aspects of the entire system, including new control algorithm design, system simulation, converter design, programming into simulation environment and experimental setup. The results confirm that the small tracking period and practicality in tracking of photovoltaic array.

A Study on Protection Method of Energy Storage System for Lithium-ion Battery Using Surge Protection Device(SPD) (SPD를 이용한 리튬이온전지용 전기저장장치의 보호방안에 관한 연구)

  • Hwang, Seung-Wook;Lee, Hu-Dong;Tae, Dong-Hyun;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.568-574
    • /
    • 2020
  • Recently, the installation of energy storage systems (ESSs) that have a range of functions, such as power stabilization of renewable energy sources, demand control, and frequency regulation, has been increasing annually. On the other hand, since the fire accident of ESS occurred at Gochang Power Test Center in August 2017, 29 fire accidents with significant property losses have occurred, including the Gyeongsan substation and Kunsan PV power plant. Because these fire accidents of ESS are arisen regardless of the season and capacity of ESS, an analysis of the fault characteristics in ESS is required to confirm the causes of the fire accidents accurately and ensure the safety of the ESS. This paper proposes the modeling of ESS using PSCAD/EMTDC S/W to identify the fault characteristics and ensure the safety of the ESS. From the simulation results of fault characteristics based on various scenarios, it is clear that the insulation of ESS may be breakdown due to the largely occurring CMV (common mode voltage). Furthermore, the CMV between the PCS and battery can be reduced, and the insulation breakdown of ESS can be prevented if an SPD (surge protect device) is installed in the battery and PCS sides, respectively.

Three-phase high power wireless transmission system (3상 대용량 무선 전력 전송 시스템)

  • Oh, Jungsik;Lee, Myungjin;Cha, Seungtae;Kim, Juyoung;Lee, Kwangwoon;Park, Taesik
    • Journal of IKEEE
    • /
    • v.21 no.3
    • /
    • pp.195-201
    • /
    • 2017
  • High-power wireless transmission system becomes a key technology for the advance of battery-powered devices. The wireless power transfer devices are currently dominated by the inductive and capacitive wireless power transfer systems, which have relatively low power transmission capacity and low efficiency rather than the wired power transmission. The work presented in this paper proposes an alternative method of high-power transmission system, based on a variable speed motor system with a magnetic coupling. It enables high-capacity power transmission, high efficiency, and low possibility of failures, and the performance of the proposed scheme is verified by simulation and experiments.

Optimization Power Management System for electric propulsion system (전기추진시스템용 OPMS 기법 연구)

  • Lee, Jong-Hak;Oh, Jin-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.8
    • /
    • pp.923-929
    • /
    • 2019
  • The stability of the propulsion system is crucial for the autonomous vessel. Multiple power generation and propulsion systems should be provided for the stability of the propulsion system. High power generation capacity is calculated for stability, resulting in economical decline due to low load operation. To solve this problem, we need to optimize the power system. In this paper, an OPMS for electric propulsion ship is constructed. The OPMS consists of a hybrid power generation system, an energy storage system, and a control load system. The power generation system consists of a dual fuel engine, the energy storage system is a battery, and the control load system consists of the propulsion load, continuous load, intermittent load, cargo part load and deck machine load. The power system was constructed by modeling the characteristics of each system. For the experiment, a scenario based on ship operation was prepared and the stability and economical efficiency were compared with existing electric propulsion ships.

Position Controller for Clutch Drive System of PHEV(Plug in Hybrid Electric Vehicle) (PHEV(Plug in Hybrid Electric Vehicle)의 클러치 구동 시스템을 위한 BLDC 모터의 위치제어기)

  • Jin, Yong-Sin;Shin, Hee-Keun;Kim, Hag-Wone;Mok, Hyung-Soo;Cho, Kwan-Yuhl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.166-173
    • /
    • 2012
  • Plug-in Hybrid Electric Vehicle is driven by the engine, the primary traction motor, and the secondary auxiliary motor generating the electric power for battery charging. Secondary auxiliary motor should be connected to the engine or separated from the engine by the clutch system. This paper presents the position controller of the BLDC motor for the clutch system of Plug-in Hybrid Electric Vehicle. The BLDC motor can be applied to the clutch system in spite of it's low accuracy of the position control due to high gear ratio between the clutch and the motor. Since the attachment and the detachment between the motor and the engine should be carried out within 0.3 seconds, the position controller with fast acceleration and deceleration is implemented. For the torque control with braking operation for the BLDC motor, the modified bipolar PWM method with low current ripple compared to the conventional unipolar PWM is presented. The position control performance of the BLDC motor for the clutch system is verified through the simulation and experiments.

A Development of Acoustic Release System in the Seafloor (심해저용 원격 착탈 제어 시스템의 개발)

  • Kim, Young-Jin;Huh, Kyung-Moo;Jeong, Han-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.9
    • /
    • pp.774-780
    • /
    • 2005
  • For the accurate inspection of the resources and space in the ocean, the method of locating the measurement equipments in the seafloor and retrieving these equipments later after a certain period of time. is generally used. In this method, the reliability of retrieving measurement equipments is very important. In our proposed remotely-controlled acoustic release system, an underwater ultrasonic wave recognition algorithm by which we can recognize the sound signal without the influence of disturbances due to underwater environment changes is developed, and a battery is used for the reduction of electric power consumption. we show the effectiveness of our proposed system through experimental results.

Development and Evaluation of Multi-string Power Balancing System for Solar Streetlight (태양광 가로등용 멀티스트링 파워 밸런싱 시스템의 개발 및 평가)

  • Yun, Jung-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.12
    • /
    • pp.1021-1027
    • /
    • 2012
  • In this paper, multi-string power balancing system for streetlight was developed. Accordingly, the components of the system was developed, unit converters, MPPT control unit, a bank of Li-ion battery and controls the charging and discharging. Loss by improving the efficiency of the system through the parallel operation of the unit converter output will be reduced. And by improving the efficiency of the system through the unit converter parallel operation, output losses will be reduced. Charging and discharging efficiency of the device used in a typical solar streetlight is calculated based on the maximum power input. Because of the variation of the input power has a weakness. In this paper, flexible to changes in the input, and a system was developed to minimize the cost per watt. Measure the performance of the unit module from the system, the result was more than 91%. And the charging capacity 12 V/105 Ah, module power 180 W, respectively. Should expect to be able to improve performance through continuous monitoring in the future.