• Title/Summary/Keyword: Battery Packs

Search Result 35, Processing Time 0.019 seconds

Study of bidirectional DCDC converter to prevent circulating current between battery packs (배터리 팩 간의 순환전류 방지를 위한 양방향 DCDC 컨버터 연구)

  • Lee, Seunghyun;Joo, Sungjun
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.695-703
    • /
    • 2019
  • In this paper, we propose a method to remove the circulating current which can occur in the parallel connection of the high voltage series connected battery module in the battery pack. The removal way is a method of inserting a module named VVSM (Variable Voltage Variable Module) using bidirectional DCDC converter and supercapacitor in place of one or some of the cascaded battery cells in the battery pack configuration. In this module, it operates like a battery cell that can be controlled at a desired voltage. VVSM is used to match the voltages of the cascaded battery modules very easily. To demonstrate the proposed method, a PSIM simulation for battery model is used. In addition, the module with only the battery cell connected in series and the module with the proposed VVSM are made, and the two modules were connected in parallel to measure the circulating current between the two modules. As a result, it was verified that the proposed method effectively suppressed the circulating current.

Multiple linear regression model-based voltage imbalance estimation for high-power series battery pack (다중선형회귀모델 기반 고출력 직렬 배터리 팩의 전압 불균형 추정)

  • Kim, Seung-Woo;Lee, Pyeong-Yeon;Han, Dong-Ho;Kim, Jong-hoon
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • In this paper, the electrical characteristics with various C-rates are tested with a high power series battery pack comprised of 18650 cylindrical nickel cobalt aluminum(NCA) lithium-ion battery. The electrical characteristics of discharge capacity test with 14S1P battery pack and electric vehicle (EV) cycle test with 4S1P battery pack are compared and analyzed by the various of C-rates. Multiple linear regression is used to estimate voltage imbalance of 14S1P and 4S1P battery packs with various C-rates based on experimental data. The estimation accuracy is evaluated by root mean square error(RMSE) to validate multiple linear regression. The result of this paper is contributed that to use for estimating the voltage imbalance of discharge capacity test with 14S1P battery pack using multiple linear regression better than to use the voltage imbalance of EV cycle with 4S1P battery pack.

A Portable Impedance Spectroscopy Instrument for the Measurement of the Impedance Spectrum of High Voltage Battery Pack (고압 배터리 팩의 임피던스 스펙트럼 측정용 휴대용 임피던스 분광기)

  • Rahim, Gul;Choi, Woo-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.3
    • /
    • pp.192-198
    • /
    • 2021
  • The battery's State of Health (SOH) is a critical parameter in the process of battery use, as it represents the Remaining Useful Life (RUL) of the battery. Electrochemical Impedance Spectroscopy (EIS) is a widely used technique in observing the state of the battery. The measured impedance at certain frequencies can be used to evaluate the state of the battery, as it is intimately tied to the underlying chemical reactions. In this work, a low-cost portable EIS instrument is developed on the basis of the ARM Cortex-M4 Microcontroller Unit (MCU) for measuring the impedance spectrum of Li-ion battery packs. The MCU uses a built-in DAC module to generate the sinusoidal sweep perturbation signal. Moreover, it performs the dual-channel acquisition of voltage and current signals, calculates impedance using a Digital Lock-in Amplifier (DLA), and transmits the result to a PC. By using LabVIEW, an interface was developed with the real-time display of the EIS information. The developed instrument was suitable for measuring the impedance spectrum of the battery pack up to 1000 V. The measurement frequency range of the instrument was from 1 hz to 1 Khz. Then, to prove the performance of the developed system, the impedance of a Samsung SM3 battery pack and a Bexel pouch module were measured and compared with those obtained by the commercial instrument.

Modeling of the Thermal Behavior of a Lithium-Ion Battery Pack (리튬 이온 전지 팩의 열적 거동 모델링)

  • Yi, Jae-Shin
    • Journal of Energy Engineering
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • The performance and life-cycle costs of electric vehicle(EV) and hybrid electric vehicle(HEV) depend inherently on battery packs. Temperature uniformity in a pack is an important factor for obtaining optimum performance for an EV or HEV battery pack, because uneven temperature distribution in a pack leads to electrically unbalanced battery cells and reduced pack performance. In this work, a three-dimensional modeling was carried out to investigate the effects of operating conditions on the thermal behavior of a lithium-ion battery pack for an EV or HEV application. Thermal conductivities of various compartments of the battery were estimated based on the equivalent network of parallel/series thermal resistances of battery components. Heat generation rate in a cell was calculated using the modeling results of the potential and current density distributions of a battery cell.

Cooling CFD Analysis of a Car Batter Pack with Circular Cells (원통형 셀을 이용한 자동차용 배터리팩 냉각해석)

  • Shin, Hyun Jang;Lee, Joo Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.10
    • /
    • pp.693-698
    • /
    • 2017
  • The 18650 battery cell is known to be reliable and cost effective, but it has a design limitation and low electric capacity compared to pouch-type cells. Because its economy is superior, an 18650-cell-type battery pack is chosen. A reliable temperature is very important in automobile battery packs. Therefore, in this study, the temperature stability of the battery pack is predicted using CFD simulation. Following 3C discharge tests, the results for the heat generation of the battery cell are compared to the simulation results. Based on these results, a natural convection condition, forced convection condition, direct cell-cooling condition, cooling condition on the upper and lower surfaces of the battery pack, and cooling condition using air channels are all simulated. The results indicate that the efficiency and the performance of the air-channel-type cooling system is good.

High safety battery management system of DC power source for hybrid vessel (하이브리드 선박 직류전원용 고 안전 BMS)

  • Choi, Jung-Leyl;Lee, Sung-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.635-641
    • /
    • 2016
  • In order to drive a hybrid propulsion device which combines an engine and an electric propulsion unit, battery packs that contain dozens of unit cells consisting of a lithium-based battery are used to maintain the power source. Therefore, it is necessary to more strictly manage a number of battery cells at any given time. In order to manage battery cells, generally voltage, current, and temperature data under load condition are monitored from a personal computer. Other important elements required to analyze the condition of the battery are the internal resistances that are used to judge its state-of-health (SOH) and the open-circuit voltage (OCV) that is used to check the battery charging state. However, in principle, the internal resistances cannot be measured during operation because the parallel equivalent circuit is composed of internal loss resistances and capacitance. In most energy storage systems, battery management system (BMS) operations are carried out by using data such as voltage, current, and temperature. However, during operation, in the case of unexpected battery cell failure, the output voltage of the power supply can be changed and propulsion of the hybrid vehicle and vessel can be difficult. This paper covers the implementation of a high safety battery management system (HSBMS) that can estimate the OCV while the device is being driven. If a battery cell fails unexpectedly, a DC power supply with lithium iron phosphate can keep providing the load with a constant output voltage using the remainder of the batteries, and it is also possible to estimate the internal resistance.

Effect of a Lightweight Hull Material and an Electric Propulsion System on Weight Reduction: Application to a 45ft CFRP Electric Yacht (CFRP 선체소재와 전기추진체계가 소형선박의 경량화에 미치는 효과)

  • Oh, Daekyun;Jung, Seungho;Jeong, Sookhyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.818-824
    • /
    • 2018
  • CFRP is often used as lightweight hull material for luxury yachts or special-service ships. An electric propulsion system is also eco-friendly, and has been trialled to equip a small vessel as its main propulsion. In this study, replacing the hull materials and propulsion system with CFRP and electric motors, we made an estimate of the effect of weight reduction and compared it to the original design, for this purpose a case study was conducted on a 45-ft yacht. When redesigning structures with CFRP, we applied the reinforcement content of the carbon fiber in the same way as the original (GC = 0.4), and when changing to the electric propulsion system, we designed motors and battery packs to achieve the same performance as the original. The result showed that CFRP and the electric propulsion system could make the structural and machinery weights 45 % and 58 % lighter, respectively. However, in terms of efficiency, it was confirmed that the electric propulsion system is practically inefficient because it requires a huge amount of battery packs for the same navigation range with diesel engines.

Autolanding Mission Planning of the IT Convergence Hoverable UAV (IT 융합 회전익 무인항공기의 자동 착륙 임무수행)

  • Jung, Sunghun;Kim, Hyunsu
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.6
    • /
    • pp.9-16
    • /
    • 2017
  • Researchers are now faced with a limited flight time of the hoverable UAV due to the sluggish technological advances of the Li-Po energy density and try to find a bypassing solution for the fully autonomous hoverable UAV mission planning. Although there are several candidate solutions, automated wireless charging is the most likely and realistic candidate and we are focusing on the autolanding strategy of the hoverable UAV in this paper since it is the main technology of it. We developed a hoverable UAV flight simulator including Li-Po battery pack simulator using MATLAB/Simulink and UAV flight and battery states are analyzed. The maximum motor power measured as 1,647 W occurs during the takeoff and cell voltage decreases down to 3.39 V during the procedure. It proves that the two Li-Po battery packs having 22 Ah and connected in series forming 12S1P are appropriate for the autolanding mission planning.

Analysis and Modeling of Fishing Boat's Power Network for using Renewable Energy Source (신재생 에너지원 활용을 위한 어선 전력계통 분석 및 모델링)

  • Lee, Sang-Jung;Lee, Dong-Gil;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.2
    • /
    • pp.182-189
    • /
    • 2016
  • A modeling method of electric power network inside a fishing boat less than 5 tons is proposed for its high-energy efficiency with renewable energy sources. The power network inside the fishing boat consists of a diesel engine, a starter motor, an alternator, battery packs, and electric loads, which are connected in parallel. To obtain proper power network model, the voltage -current characteristics of the electric components are considered to develop elaborate electrical models under several load conditions. Measured data of the battery and alternator current include noise. By using an average method, the AC components from the power network of the fishing boat can be reduced, which is verified by KCL rule. Using the proposed power network model, the power generation of the alternator and the reduction of diesel consumption in the boat's engine are predictable under various operating conditions. The validity of the proposed methodology is verified by comparing simulation results with experimental measurements using statistical inferences.

Design and Implementation of 150W Portable Fuel Cell Power Pack (150W급 휴대용 연료전지 Power Pack 설계 및 제작)

  • Woo, Dong-Gyun;Joo, Dong-Myoung;Kim, Yun-Sung;Oh, Jae-Gi;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.553-561
    • /
    • 2012
  • Existing energy sources convert chemical energy into mechanical energy, while fuel cell directly generates electricity through an electrochemical reaction between hydrogen and oxygen. Therefore, it has a lot of strong points such as high efficiency, zero emission, and etc. In addition, with the development of hydrogen preservation technique, some companies have been researching and releasing portable fuel cell power packs for specific applications like military equipment, automobile, and so on. However, there are some drawbacks to the fuel cell, high cost and slow dynamic response. In order to compensate these weak points, auxiliary energy storages could be applied to the fuel cell system. In this paper, the optimum structure for a 150W portable fuel cell power pack with a battery pack is selected considering the specification of the system, and the design process of main parts is described in detail. Here, main objectives are compact size, simple control, high efficiency, and low cost. Then, an automatic mode change algorithm, which converts the operating mode depending on the states of fuel cell stack, battery pack, and load, is introduced. Finally, performance of the designed prototype using the automatic mode change control is verified through experiments.