• Title/Summary/Keyword: Battery Packs

Search Result 35, Processing Time 0.028 seconds

Comparison and Selection of Quantitative Priority in Battery Screening Group Based on Series Resistance/Fuzzy Logic (직렬저항/퍼지로직 기반 배터리 선별 그룹 내 정량적 우선순위 비교 및 선정)

  • Cho, Sangwoo;Han, Dongho;Choi, Changki;Kim, Jaewon;Kim, Jonghoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.2
    • /
    • pp.142-149
    • /
    • 2022
  • In increasing the safety and usage of lithium-ion battery packs, reducing the parameter deviation between cells, such as voltage and temperature within the battery pack, is important. In this study, we propose a screening method to reduce parameter deviation between cells in battery packs. Screening algorithms are constructed based on Fuzzy logic and quantitatively express the similarities between battery cells. Screening is applied by utilizing series resistance components after experiments of electrical characteristics that consider the operation status of battery packs. After screening, the standard deviation of series resistance components according to the similarity ranking is compared and analyzed, and their conformity are verified with the algorithm parameters.

Inner Temperature Distribution by Two Appearances of Series-Cell Configured Battery Pack using Cylindrical Cells (원통형셀 기반 직렬배터리팩의 외형(정사/직사면체) 차이에 의한 내부 열분포 기초해석)

  • Han, Dong-Ho;Lee, Pyeng-Yeon;Park, Jin-Hyeng;Kim, Jonghoon;Yoo, Kisoo;Cho, In-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.6
    • /
    • pp.408-414
    • /
    • 2018
  • Given that lithium-ion batteries are expected to be used as power sources for electric and hybrid vehicles, thermodynamics experimentation and prediction based on experimental data were performed. Thermal, electrochemical, and electrochemical/electrical-thermal models were used for accurate battery modeling. Various applications of different battery packs were demonstrated, and thermal analysis was performed using the same experimental conditions for square and rectangular battery packs. Accurate thermal analysis for a single cell should be prioritized to determine the thermal behavior of the battery pack. The energy balance equation, which contains heat generation and heat transfer factors, defines the thermal behavior of the battery pack. By comparing battery packs of different shapes tested under the same condition, this study revealed that the rectangular battery pack is superior to the square battery pack in terms of the maximum temperature of inner cells and temperature variation between cells.

Development of Simulator for Hierarchical Battery Management System (계층적 배터리 관리 시스템 시뮬레이션 기술 개발)

  • Kang, Hyunwoo;Ahn, SungHo;Kim, Dongkyun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.4
    • /
    • pp.213-218
    • /
    • 2013
  • In this research, we report on the development of simulation system for performance verification of BMS(Battery Management System) which is utilized in electric vehicles. In the industrial circles, a manufacturer of BMS typically tests their system with real battery packs. However, it takes a long time to test all functions of BMS. Here, we develop BMU(Battery Managament Unit) as an embedded board, which will be installed in electric vehicle for controlling battery packs. All other environment factors for testing BMU are developed in softwares in order to reduce the term of test. Especially, the proposed system consists of cell simulator and CMU(Cell Management Unit) simulator which simulate real battery cells and control battery cells. These simulators enable the BMU to test more battery cells. In addition, proposed system provides diagnosis program in order to diagnose and monitor the condition of BMS which makes the test of BMS more easily. In order to verify the performance of the developed simulator, we have performed the experiment with real battery packs and our simulator. Through comparing two results of experiments, we verify that developed simulator shows better performance in terms of less amount of testing duration though having high reliability.

Internal Structure Optimization to enhance the Thermal Performance of an Air-cooled Lithium-ion Battery Pack (공냉식 리튬 이온 배터리 팩의 열 성능 향상을 위한 내부 구조 최적화)

  • Li, Quanyi;Cho, Jong-Rae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.54-64
    • /
    • 2021
  • Electric vehicles use lithium-ion battery packs as the power supply, where the batteries are connected in series or parallel. The temperature control of each battery is essential to ensure a consistent overall temperature. This study focused on reducing ohmic heating caused by batteries to realize a uniform battery temperature. The battery spacing was optimized to improve air cooling, and the tilt angle between the batteries was varied to optimize the internal structure of the batterypack. Simulations were performed to evaluate the effects of these parameters, and the results showed that the optimal scheme effectively achieved a uniform battery temperature under a constant power discharge. These findings can contribute to future research on cooling methods for battery packs.

Detection Algorithm and Extract of Deviation Parameters for Battery Pack Based on Internal Resistance Aging (저항 열화 기반의 배터리 팩 편차 파라미터 추출 방안 및 검출 알고리즘)

  • Song, Jung-Yong;Huh, Chang-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.7
    • /
    • pp.515-520
    • /
    • 2018
  • A large number of lithium-ion batteries are arranged in series and parallel in battery packs, such as those in electric vehicles or energy storage systems. As battery packs age, their output power and energy density drop because of voltage deviation, constant and non-uniform exposure to abnormal environments, and increased contact resistance between batteries; this reduces application system efficiency. Despite the balancing circuit and logic of the battery management system, the output of the battery pack is concentrated in the most severely aged unit cell and the output is frequently limited by power derating. In this study, we implemented a cell imbalance detection algorithm and selected parameters to detect a sudden decrease in battery pack output. In addition, we propose a method to increase efficiency by applying the measured testing values considering the operating conditions and abnormal conditions of the battery pack.

Rapid-Charging Solution for 18650 Cylindrical Lithium-Ion Battery Packs for Forklifts

  • Kim, Dong-Rak;Kang, Jin-Wook;Eom, Tae-Ho;Kim, Jun-Mo;Lee, Jeong;Won, Chung-Yuen
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.184-194
    • /
    • 2018
  • In this paper, we propose a rapid-charging system for the lithium-ion battery (LIB) packs used in electric forklifts. The battery offers three benefits: reduced charge time, prolonged battery life, and increased charging efficiency. A rapid-charging algorithm and DC/DC converter topology are proposed to achieve these benefits. This algorithm is developed using an electrochemical model, which controls the maximum charging current limit depending on the cell voltage and temperature. The experimental use of a selected 18650 LIB cell verified the prolongation of battery life on use of the algorithm. The proposed converter offers the same topological merits as a conventional resonant converter but solves the light-load regulation problem of conventional resonant converters by adopting pulse-width modulation. A 6.6-kW converter and charging algorithm were used with a forklift battery pack to verify this method's operational principles and advantages.

Z-score Based Abnormal Detection for Stable Operation of the Series/Parallel-cell Configured Battery Pack (직병렬조합 배터리팩의 안전운용을 위한 Z-score 기반 이상 동작 검출 방법)

  • Kang, Deokhun;Lee, Pyeong-Yeon;Kim, Deokhan;Kim, Seung-Keun;Kim, Jonghoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.6
    • /
    • pp.390-396
    • /
    • 2021
  • Lithium-ion batteries have been designed and used as battery packs with series and parallel combinations that are suitable for use. However, due to its internal electrochemical properties, producing the battery's condition at the same value is impossible for individual cells. In addition, the management of characteristic deviations between individual cells is essential for the safe and efficient use of batteries as aging progresses with the use of batteries. In this work, we propose a method to manage deviation properties and detect abnormal behavior in the configuration of a combined battery pack of these multiple battery cells. The proposed method can separate and detect probabilistic low-frequency information according to statistical information based on Z-score. The verification of the proposed algorithm was validated using experimental results from 10S3P battery packs, and the implemented algorithm based on Z-score was validated as a way to effectively manage multiple individual cell information.

Development and Validation of an Energy Management System for an Electric Vehicle with a split Battery Storage System

  • Becker, Jan;Schaeper, Christoph;Rothgang, Susanne;Sauer, Dirk Uwe
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.920-929
    • /
    • 2013
  • Within the project 'e performance' supported by the German Ministry of Education and Research (BMBF) an electric vehicle, powered by two lithium-ion battery packs of different capacity and voltage has been developed. The required Energy Management System (EMS) in this system controls the current flows of both packs independently by means of two individual dc-dc converters. It acts as an intermediary between energy storage (battery management systems-BMS) and the drivetrain controller on the vehicle control unit (VCU) as well as the on-board charger. This paper describes the most important tasks of the EMS and its interfaces to the BMS and the VCU. To validate the algorithms before integrating them into the vehicle prototype, a detailed Matlab / Simulink-model was created in the project. Test procedures and results from the simulation as well as experiences and comparisons from the real car are presented at the end.

The Design of a Battery Power System and Its Performance Evaluation on the Ground for Vertical Takeoff and Landing Drones (수직 이착륙 무인기용 배터리 전력 시스템 설계 및 지상 시험 평가)

  • Gang, Byeong Gyu
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.43-49
    • /
    • 2021
  • This research shows how is designed, and its performance is evaluated on the ground for the VTOL drone before the flight test initiates. The targeted drone weight is approximately 45 kg including battery packs, and 4 motors are utilized to produce thrust and control directions. 30 min flight schedules were simulated to estimate the total power consumptions which result in 2.4 kWh. Then, two packs of 13-cells lithium-polymer battery with operating voltage ranging between 54 V and 44 V with up to 4 C-rate were fabricated to safely operate a VTOL drone. Moreover, the battery management system was installed to prevent over and under-voltage and over-current while running a battery system. To finally verify battery's performance, we conducted a ground evaluation for discharging battery tests at -10 ℃, 25 ℃ and 40 ℃, resulting in satisfying simulated power consumption conditions for flight schedules.

A Study on the Cooling Performance Improvement of Pouch Battery Thermal Management System for Electric Vehicles (전기자동차 파우치형 배터리 열관리 시스템의 냉각성능 향상에 대한 연구)

  • Shin, Jeong-Hoon;Lee, Jun-Kyoung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.5
    • /
    • pp.715-724
    • /
    • 2022
  • In many electric vehicles, large-capacity pouch-type lithium-ion battery packs are mainly used to increase the mileage on a single charge. The lithium ion battery should be operated within the temperature range of 25℃ to 40℃ because the battery performance can be rapidly deteriorated due to an increase in internal temperature. Battery thermal management system (BTMS) can give the suitable temperature conditions to battery by water cooling method. In this research, the heat transfer characteristics (the battery temperature distributions and the water flow characteristics) were analyzed by CFD method to investigate the thermal performance of the cooling plate with 4-pass water flow structure. Moreover, the effect of the presence of fins between the battery cell was identified. The fins made smooth temperature distributions between the battery cells due to the heat spreading and lower the average battery cells temperature.