• Title/Summary/Keyword: Battery Management system

Search Result 421, Processing Time 0.025 seconds

Virtual Environment Modeling for Battery Management System

  • Piao, Chang-Hao;Yu, Qi-Fan;Duan, Chong-Xi;Su, Ling;Zhang, Yan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1729-1738
    • /
    • 2014
  • The offline verification of state of charge estimation, power estimation, fault diagnosis and emergency control of battery management system (BMS) is one of the key technologies in the field of electric vehicle battery system. It is difficult to test and verify the battery management system software in the early stage, especially for algorithms such as system state estimation, emergency control and so on. This article carried out the virtual environment modeling for verification of battery management system. According to the input/output parameters of battery management system, virtual environment is determined to run the battery management system. With the integration of the developed BMS model and the external model, the virtual environment model has been established for battery management system in the vehicle's working environment. Through the virtual environment model, the effectiveness of software algorithm of BMS was verified, such as battery state parameters estimation, power estimation, fault diagnosis, charge and discharge management, etc.

Computational Design of Battery System for Automotive Applications (전기자동차 배터리 시스템 개발을 위한 전산설계기술)

  • Jung, Seunghun
    • Journal of Institute of Convergence Technology
    • /
    • v.10 no.1
    • /
    • pp.37-40
    • /
    • 2020
  • Automotive battery system consists of various components such as battery cells, mechanical structures, cooling system, and control system. Recently, various computational technologies are required to develop an automotive battery system. Physics-based cell modeling is used for designing a new battery cell by conducting optimization of material selection and composition in electrodes. Structural analysis plays an important role in designing a protective system of battery system from mechanical shock and vibration. Thermal modeling is used in development of thermal management system to maintain the temperature of battery cells in safe range. Finally, vehicle simulation is conducted to validate the performance of electric vehicle with the developed battery system.

A Study on developing the Battery Management System for Electric Vehicle (전기자동차용 배터리 관리 시스템에 관한 연구)

  • Han, A-Gun;Park, Jae-Hyeon;Choo, Yeon-Gyu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.882-883
    • /
    • 2013
  • With the development of the society, pure electric vehicles will be surely important of the future. Electric vehicle requires various technology like motor driving, battery management, operational efficiencies and so on. Battery management is indeed the most important to enhance battery's performance and life. This paper has deeply discussed and studied on the lithium-polymer battery management system of pure electric vehicle. First of all we have analyzed the characteristic of the lithium-polymer batteries and the factors influenced on the state of charge. Then a logical SOC measuring method has been raised, which is the combination of open circuit voltage and Ah integration. The next we will introduce the design of battery management system, the battery management system performs many functions, such as inspecting the whole process, when it's running cell equalization protecting and diagnosing the battery, estimating the state of charge. The module design style including microcontroller, data aquisition module, charging control module and serial communication module. To arrive at conclusions, the battery management system which this paper has introduced is reliable and economical.

  • PDF

Design and development of less than 1Kw Lithium rechargeable battery pack

  • Kim, Sang-Bum;Lee, Sang-Hyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.3
    • /
    • pp.104-108
    • /
    • 2018
  • Lithium-ion batteries have been used in energy storage systems (ESS), electric vehicles (EVs), etc. due to their high safety, fast charging and long lifecycle. This paper aims to improve the convenience of users by changing the wired battery stack used in the battery pack, wirelessly using RFID, reducing the internal volume of the battery pack, reducing the size of the battery pack. In this paper, we propose a battery management system which can provide the flexibility of battery pack expansion and maintenance by using lithium ion battery, battery management system (BMS) and wireless communication for light weight of 1Kw small battery pack. Also, by flexibly arranging the cell layout inside the battery pack and designing to reduce the size of the outer shape of the battery pack.

The SOC Management Strategy of Battery System for Propulsion in Wireless Low Floor System (무가선 저상트램 추진배터리 시스템의 SOC관리 전략)

  • Oh, Yong-Kuk;Kwak, Jae-Ho;Lee, Ho-Yong
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2329-2335
    • /
    • 2011
  • The Wireless low floor tram uses the energy more effectively than other systems with onboard battery system. But for this the SOC(state of charge) management of the battery system is required. This paper is focused on the SOC management strategy of battery system for propulsion in wireless low floor tram. For minimizing consumption energy, the SOC management strategy that maximizes the regeneration energy is studied. The SOC operating region is divided to overcome the limited life cycle pointed out as a disadvantage of battery system. And the effective energy management strategy of tram is suggested through the charge/discharge of the battery system according to tram status in catenary/catenary-free section.

  • PDF

Development of Simulator for Hierarchical Battery Management System (계층적 배터리 관리 시스템 시뮬레이션 기술 개발)

  • Kang, Hyunwoo;Ahn, SungHo;Kim, Dongkyun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.4
    • /
    • pp.213-218
    • /
    • 2013
  • In this research, we report on the development of simulation system for performance verification of BMS(Battery Management System) which is utilized in electric vehicles. In the industrial circles, a manufacturer of BMS typically tests their system with real battery packs. However, it takes a long time to test all functions of BMS. Here, we develop BMU(Battery Managament Unit) as an embedded board, which will be installed in electric vehicle for controlling battery packs. All other environment factors for testing BMU are developed in softwares in order to reduce the term of test. Especially, the proposed system consists of cell simulator and CMU(Cell Management Unit) simulator which simulate real battery cells and control battery cells. These simulators enable the BMU to test more battery cells. In addition, proposed system provides diagnosis program in order to diagnose and monitor the condition of BMS which makes the test of BMS more easily. In order to verify the performance of the developed simulator, we have performed the experiment with real battery packs and our simulator. Through comparing two results of experiments, we verify that developed simulator shows better performance in terms of less amount of testing duration though having high reliability.

The study on a ship energy management system applied rechargeable battery

  • Jang, Jae-Hee;Oh, Jin-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.202-207
    • /
    • 2014
  • Recently, the study of energy saving technology of ships begins in earnest, as energy saving policies are performed all around the world. SEMS (Ship Energy Management System) is one of the techniques to increase energy efficiency by applying to a independent system like a ship and offshore. SEMS is composed of Cooling Pump Control System (CPCS), Renewable Energy Emergency Power Control System (REEPCS), Load Control System (LCS), and Heating, Ventilation, and Air Conditioning System (HVACS). SEMS is enable to increase energy efficiency and achieve integrated management through the interlocking of each system. Especially, it is possible to improve the flexibility of the selection of the generator capacity in conjunction with a rechargeable battery and renewable energy. In this paper, SEMS applied rechargeable battery is proposed and simulated. By applying the rechargeable battery, it was confirmed that SEMS applied rechargeable battery can be operated at optimum efficiency of the generator.

A Study on the Cooling Performance Improvement of Pouch Battery Thermal Management System for Electric Vehicles (전기자동차 파우치형 배터리 열관리 시스템의 냉각성능 향상에 대한 연구)

  • Shin, Jeong-Hoon;Lee, Jun-Kyoung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.5
    • /
    • pp.715-724
    • /
    • 2022
  • In many electric vehicles, large-capacity pouch-type lithium-ion battery packs are mainly used to increase the mileage on a single charge. The lithium ion battery should be operated within the temperature range of 25℃ to 40℃ because the battery performance can be rapidly deteriorated due to an increase in internal temperature. Battery thermal management system (BTMS) can give the suitable temperature conditions to battery by water cooling method. In this research, the heat transfer characteristics (the battery temperature distributions and the water flow characteristics) were analyzed by CFD method to investigate the thermal performance of the cooling plate with 4-pass water flow structure. Moreover, the effect of the presence of fins between the battery cell was identified. The fins made smooth temperature distributions between the battery cells due to the heat spreading and lower the average battery cells temperature.

Design Considerations of a Lithium Ion Battery Management System (BMS) for the STSAT-3 Satellite

  • Park, Kyung-Hwa;Kim, Chol-Ho;Cho, Hee-Keun;Seo, Joung-Ki
    • Journal of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.210-217
    • /
    • 2010
  • This paper introduces a lithium ion battery management system (BMS) for the STSAT-3 satellite. The specifications of a lithium ion battery unit are proposed to supply power to the satellite and the overall electrical and mechanical designs for a lithium ion battery management system are presented. The structural simulation results will be shown to confirm the behavior of both the BMS and the cells.

The heavy load control of ship's battery connected power management system (배터리 연계형 선박 전력관리시스템의 중부하 제어)

  • Kang, Young-Min;Jang, Jae-Hee;Oh, Jin-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.7
    • /
    • pp.1455-1463
    • /
    • 2017
  • Global economy has recorded low growth, low consumption, high unemployment rate, high risk, short boom and long recession. As a result, maritime economy declines and the reduction of maintenance costs is inevitable. Thus, Studies such as green ship, eco ship, and smart ship are being actively conducted to save energy of ship. Power management system that use batteries in green ship is an important research area. In this paper, we analyze the heavy load control of a power management system of a general ship using only a generator, and study a heavy load control algorithm for a battery connected power management system. To study this, a structure of battery connected power management system is proposed and a battery connected power simulator was constructed based on the proposed system. Through the simulator, the operation of the battery according to the heavy load control is defined and confirmed in the battery connected power management system.