• Title/Summary/Keyword: Battery Electrical Model

Search Result 219, Processing Time 0.032 seconds

Experiment and Implementation of NiMH Battery Model for Autonomie Environment (Autonomie에 적용 가능한 NiMH 배터리 모델 실험 및 구현)

  • Lee, Jong-Kyung;Kim, Jae-Eon;Cha, Han-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1875-1880
    • /
    • 2011
  • This paper proposes a battery model applicable to Autonomie environment. Also, a various of experiment is implemented for validation. The proposed battery model modifies Randles equivalent circuit and battery parameters are extracted from pulsed current tests. The parameters are two-dimensional function of current and SOC(State of Charge). The battery model is developed in the Matlab/Simulink and is implemented for NiMH Panasonic HHR650D and compared with pulsed current discharge curves. The simulation results validate the accuracy of the proposed model and the model is also tested by adding it on Autonomie for HEV application. Constant current charge/discharge, pulsed current test that can be used to extract battery parameter are performed and test results are used to build up the proposed battery model for Autonomie.

Development of a Battery Model for Electric Vehicle Virtual Platform (전기 자동차 가상 플랫폼용 배터리 모델 개발 및 검증)

  • Kim, Sunwoo;Jo, Jongmin;Han, Jaeyoung;Kim, Sung-Soo;Cha, Hanju;Yu, Sangseok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.5
    • /
    • pp.486-493
    • /
    • 2015
  • In this paper, a battery model for electric vehicle virtual platform was developed. A battery model consisted of a battery cell model and battery thermal management system. A battery cell model was developed based on Randles equivalent circuit model. Circuit parameters in the form of 3D map data was obtained by charge-discharge experiment of Li-Polymer battery in various temperature condition. The developed battery cell model was experimentally verified by comparing voltages. Thermal management system model was also developed using heat generator, heat transfer and convection model, and cooling fan. For verification of the developed battery model in vehicle level, the integrated battery model was applied in to EV(electric vehicle) virtual platform, and virtual driving simulation using UDDS velocity profile was conducted. The accuracy of the developed battery model has been verified by comparing the simulation results from EV platform with the experimental data.

Due to the Difference in Uniformity of Electrical Characteristics between Cells in a Battery Pack SOC Estimation Performance Comparative Analysis (배터리팩 내 셀 간 전기적 특성 균일도 차이에 의한 SOC 추정성능 비교분석)

  • Park, Jin-Hyeong;Lee, Pyeong-Yeon;Jang, Sung-Soo;Kim, Jonghoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.1
    • /
    • pp.16-24
    • /
    • 2019
  • The performance of the battery management system (BMS) algorithm is important for ensuring the stability and efficient operation of battery packs. Such a performance is determined by the internal parameters of the electrical equivalent circuit model (EECM). This study proposes a performance improvement and verification of battery parameters for the BMS algorithm using electrical experiments and tools. The parameters were extracted through electrical characteristic experiments, and an EECM based on Ah counting was designed. Simulation results using the EECM were compared with actual experimental data to determine the best parameter extraction method.

Enhanced Equivalent Circuit Modeling for Li-ion Battery Using Recursive Parameter Correction

  • Ko, Sung-Tae;Ahn, Jung-Hoon;Lee, Byoung Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1147-1155
    • /
    • 2018
  • This paper presents an improved method to determine the internal parameters for improving accuracy of a lithium ion battery equivalent circuit model. Conventional methods for the parameter estimation directly using the curve fitting results generate the phenomenon to be incorrect due to the influence of the internal capacitive impedance. To solve this phenomenon, simple correction procedure with transient state analysis is proposed and added to the parameter estimation method. Furthermore, conventional dynamic equation for correction is enhanced with advanced RC impedance dynamic equation so that the proposed modeling results describe the battery dynamic characteristics more exactly. The improved accuracy of the battery model by the proposed modeling method is verified by single cell experiments compared to the other type of models.

A Novel Model of a Li-ion Battery Based on the Manufacturer's Datasheet

  • Zhang, Xiaoqiang;Zhang, Weiping;Zhang, Mao
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.5
    • /
    • pp.237-245
    • /
    • 2017
  • A novel battery model based on the manufacturer datasheet is proposed. According to this model, not only the steady state but also the dynamic charging performance of the Li-ion battery can be analyzed and evaluated. The major advantage of our model is that all the parameters can be directly obtained from the datasheet and no additional experiments are required. Moreover, the transition between charge and discharge stages was analyzed based on our model, and a novel Simulink module was built to predict the energy consumption of a battery-powered system. Experiments were carried out to verify the model accuracy. Although the new model was developed for the Li-ion battery, it is expected to be applicable to other batteries.

A CHARGER/DISCHARGER FOR MODELING OF SERIAL/PARALLEL CONNECTED NI-MH BATTERY

  • Heo, Min-Ho;Ahn, Jae-Young;Kim, Kwang-Heon
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.554-559
    • /
    • 1998
  • Equalizing the state of charge of cell that affects the charge/discharge quality and efficiency of the battery through the charge/discharge characteristic experiments of battery source, we develope the high efficiency charge/discharge system which would be used in serial HEV with the constant engine-generator output. For this, establishes the electrical model of Ni-MH battery appropriate to the high efficiency charge/discharge conditions. There is no model of Ni-MH cell, so we used Ni-Cd model and obtain the Ni-MH model through the experiment. A reason that each cell has the same charge/discharge property for applying the cell model to serial/parallel connected battery source extensively is needed. Therefore, in this paper, propose the Ni-MH charger/discharger has the equalization charging function and selectable cut-off function.

  • PDF

Electro-Thermal Model Based-Temperature Estimation Method of Lithium-Ion Battery for Fuel-Cell and Battery Hybrid Railroad Propulsion System (하이브리드 철도차량 시스템의 전기-열 모델 기반 리튬이온 배터리 온도 추정 방안)

  • Park, Seongyun;Kim, Jaeyoung;Kim, Jonghoon;Ryu, Joonhyoung;Cho, Inho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.5
    • /
    • pp.357-363
    • /
    • 2021
  • Eco-friendly hybrid railroad propulsion system with fuel-cell and battery was suggested to reduce carbon dioxide gas and replace retired diesel railroads. Lithium-ion battery with high energy/power density and long lifetime is selected as the energy source at the battery side due to its excellent performance. However, the performance of lithium-ion batteries was affected by temperature, current rate, and operating condition. Temperature is known to be the most influential factor in changing battery parameters. In addition, appropriate thermal management is required to ensure the safe and effective operation of lithium-ion battery. Electro-thermal coupled model with varying parameter depends on temperature, and state-of-charge (SOC) is suggested to estimate battery temperature. The electric-thermal coupled model contains diffusion current using parameter identification by adaptive control algorithm when considering thermal diffusion effect. An experiment under forced convection was conducted using cylindrical cell and 18 parallel-connected battery module to demonstrate the method.

Electrical Modeling of Lithium-Polymer Battery (리튬폴리머 전지의 전기적 모델링)

  • Im, Jae-Kwan;Lim, Deok-Young;Windarko, Novie Ayub;Choi, Jae-Ho;Chung, Gyo-Bum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.199-207
    • /
    • 2011
  • Electrical modeling of lithium-polymer battery is very important for electric energy supply system. In this paper, electric equivalent circuit of lithium-polymer battery is proposed to simulate its dynamic characteristics. Maccor 8500 charge/discharge system is used to obtain the experimental data of lithium-polymer battery. Model parameters are calculated by using Matlab. This paper defines a R-C model for charging/discharging of battery and polynomial functions are used for OCV (Open Circuit Voltage) modeling. The proposed model is simulated with PSiM and then compared the simulation results with the experimental results to verify the validity of the proposed model.

Electric Model of Li-Ion Polymer Battery for Motor Driving Circuit in Hybrid Electric Vehicle

  • Lee, June-Sang;Lee, Jae-Joong;Kim, Mi-Ro;Park, In-Jun;Kim, Jung-Gu;Lee, Ki-Sik;Nah, Wan-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.932-939
    • /
    • 2012
  • This paper presents an equivalent circuit model of a LIPB (Li-Ion Polymer battery) for Hybrid Electric Vehicles (HEVs). The proposed equivalent circuit can be used to predict the charging/discharging characteristics in time domain as well as the impedance characteristic analysis in frequency domain. Based on these features, a one-cell model is established as a function of Depth of Discharge (DoD), and a 48-cell model for a battery pack was also established. It was confirmed by experiment that the proposed model predict the discharging and impedance (AC) characteristics quite accurately at different constant current levels. To check the usefulness of the proposed circuit, the model was used to simulate a motor driving circuit with an Insulated Gate Bipolar Transistor (IGBT) inverter and Brushless DC (BLDC) motor, and it is confirmed that the model can calculate the battery voltage fluctuation in time domain at different DoDs.

Modeling of 36V lead acid battery for 42V system simulation (42V 시스템 시뮬레이션을 위한 36V 납축전지 모델링)

  • Yun Han-Seok;Lee Jea-Ho;Cho Bo-Hyung
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1525-1527
    • /
    • 2004
  • Modeling of the battery for 42V Power-Net system is presented. For the Battery Management System(BMS) algorithm in a Mildhybrid vehicle, accuracy in SOC estimation is crucial. The battery model is needed for the BMS algorithm as well as system computer symulation for the energy management. The battery model was composed of impedance elements and the each element of the model is estimated by the analysis of the terminal voltage. The result of the model is confirmed by experimental data.

  • PDF