• 제목/요약/키워드: Batch kinetic

검색결과 289건 처리시간 0.025초

주물사가 포함된 투수반응벽체(PRB)를 이용한 아연으로 오염된 지하수 처리기법 연구 (Remediation of Groundwater Contaminated with Zinc Using Permeable Reactive Barriers Containing Foundry Sands)

  • 이태윤;;박재우
    • 한국지반공학회논문집
    • /
    • 제18권5호
    • /
    • pp.159-167
    • /
    • 2002
  • 아연의 주물사에 대한 분배계수는 주물사에 포함된 TOC, 점토 함량, 총 철 함량 등에 따라 변하고 특히 용액 PH에 큰 영향을 받는 것을 관찰하였다. Batch 실험으로부터 얻어진 경험식으로부터분배계수와 제거상수를 예측할 수 있었다. Batch kinetic 실험과 batch sorption 실험으로부터 얻어진 분배계수는 용액 pH가 같을 시 거의 같은 값을 보이고 있다.

Protein Adsorption on Ion Exchange Resin: Estimation of Equilibrium Isotherm Parameters from Batch Kinetic Data

  • Chu K.H.;Hashim M.A.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제11권1호
    • /
    • pp.61-66
    • /
    • 2006
  • The simple Langmuir isotherm is frequently employed to describe the equilibrium behavior of protein adsorption on a wide variety of adsorbents. The two adjustable parameters of the Langmuir isotherm - the saturation capacity, or $q_m$, and the dissociation constant, $K_d$ - are usually estimated by fitting the isotherm equation to the equilibrium data acquired from batch equilibration experiments. In this study, we have evaluated the possibility of estimating $q_m$ and $K_d$ for the adsorption of bovine serum albumin to a cation exchanger using batch kinetic data. A rate model predicated on the kinetic form of the Langmuir isotherm, with three adjustable parameters ($q_m,\;K_d$, and a rate constant), was fitted to a single kinetic profile. The value of $q_m$ determined as the result of this approach was quantitatively consistent with the $q_m$ value derived from the traditional batch equilibrium data. However, the $K_d$ value could not be retrieved from the kinetic profile, as the model fit proved insensitive to this parameter. Sensitivity analysis provided significant insight into the identifiability of the three model parameters.

Phosphate Removal from Aqueous Solution by Aluminum (Hydr)oxide-coated Sand

  • Han, Yong-Un;Park, Seong-Jik;Park, Jeong-Ann;Choi, Nag-Choul;Kim, Song-Bae
    • Environmental Engineering Research
    • /
    • 제14권3호
    • /
    • pp.164-169
    • /
    • 2009
  • A powder form of aluminum (hydr)oxides is not suitable in wastewater treatment/filtration systems because of low hydraulic conductivity and large sludge production. In this study, aluminum (hydr)oxide-coated sand (AOCS) was used to remove phosphate from aqueous solution. The properties of AOCS were analyzed using a scanning electron microscopy (SEM) combined with an energy dispersive X-ray spectrometer (EDS) and an X-ray diffractometer (XRD). Kinetic batch, equilibrium batch, and closed-loop column experiments were performed to examine the adsorption of phosphate to AOCS. The XRD pattern indicated that the powder form of aluminum (hydr)oxides coated on AOCS was similar to a low crystalline boehmite. Kinetic batch experiments demonstrated that P adsorption to AOCS reached equilibrium after 24 h of reaction time. The kinetic sorption data were described well by the pseudo second-order kinetic sorption model, which determined the amount of P adsorbed at equilibrium ($q_e$ = 0.118 mg/g) and the pseudo second-order velocity constant (k = 0.0036 g/mg/h) at initial P concentration of 25 mg/L. The equilibrium batch data were fitted well to the Freundlich isotherm model, which quantified the distribution coefficient ($K_F$ = 0.083 L/g), and the Freundlich constant (1/n = 0.339). The closed-loop column experiments showed that the phosphate removal percent decreased from 89.1 to 41.9% with increasing initial pH from 4.82 to 9.53. The adsorption capacity determined from the closed-loop experiment was 0.239 mg/g at initial pH 7.0, which is about two times greater than that ($q_e$ = 0.118 mg/g) from the kinetic batch experiment at the same condition.

Kinetic Analysis of the Effect of Cell Density on Hybridoma Cell Growth in Batch Culture

  • Lee, Eun-Yeol
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제7권2호
    • /
    • pp.117-120
    • /
    • 2002
  • The effect of cell density on cell growth was investigated in a suspension batch culture of hybridoma cells. The specific growth rate was found to increase with increasing initial cell density and then to decrease with further increases in initial cell density. In order to quantitatively describe the dependence of specific growth rate on cell density, a kinetic model is proposed, which satisfactorily represents the experimental data.

연속 회분식 반응조에서 생물학적 영양염류 제거에 대한 모델링 및 동적 시뮬레이션(I) (Modeling and Dynamic Simulation for Biological Nutrient Removal in a Sequencing Batch Reactor(I))

  • 김동한;정태학
    • 상하수도학회지
    • /
    • 제13권3호
    • /
    • pp.42-55
    • /
    • 1999
  • A mathematical model for biological nutrient removal in a sequencing batch reactor process, which is based on the IAWQ Activated Sludge Model No. 2 with a few modifications, has been developed. Twenty water quality components and twenty three kinetic equations are incorporated in the model. The model is structured in the matrix form based on the law of mass conservation using stoichiometry and kinetic equations. Stoichiometric coefficients and kinetic parameters included in the model equations are chosen from the literature. A multistep predictor-corrector algorithm of variable step-size is adopted for solving the vector nonlinear ordinary differential equations. The simulation for experimental results is conducted to evaluate the validity of the model and to calibrate coefficients and parameters. The simulation using the model well represents the experimental results from laboratory. The mathematical model developed in this study may be utilized for the design and operation of a sequencing batch reactor process under the steady and unsteady-state at various environmental conditions.

  • PDF

반회분 에스테르화 반응기의 최적화 (Optimization of a semi-batch esterification reactor)

  • 이융효;박선원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.582-588
    • /
    • 1993
  • A scheme of dynamic optimization for batch reactor his been developed and applied to a semi-batch esterification reactor. To obtain optimal operating conditions for the given semi-batch reactor system with complex reaction kinetic and process constraints, a general nonlinear programming solver and finite element techniques have been introduced. The optimization results for the complex reactor system have been compared with those of Kumar et al. [1984] to show better optimization performance. The proposed optimizing scheme has been applied to the free end time problem to obtain the realistic operating condition. The results can supply valuable information for economic operation of the given batch esterification reactor.

  • PDF

에타놀 생산을 위한 Semi-batch 발효 공정의 최적화 (Optimization of Semi-Batch Process for Ethanol Production)

  • Lee, Jae-Heung
    • 한국미생물·생명공학회지
    • /
    • 제11권1호
    • /
    • pp.33-38
    • /
    • 1983
  • 에타놀을 생산하는 Flocculent 균주는 균체순환을 위한 외부적인 장치 없이도 발효조 내부 자체에서 고농도의 균체를 유지시킬 수 있는 장점이 있다. 본 연구에서는 Flocculation 특성을 가지고 있는 Saccharomyces uvarum을 사용하여 Glucose 배지에서 회분식 및 연속식 발효특성을 고찰하였고 에타놀 발효의 수학적 모델을 만들었다. 이를 이용하여 여러 온도 및 pH에 따른 발효특성을 비교 검토한 결과 균체성장과 에탄올 생산의 최적온도는 33~35$^{\circ}C$ 이었고 pH 에 대한 영향은 그리 크지 않았으나 pH5가 최적 조건이었다. 이러한 환경적 최적 조건하에서 Semi-batch 발효에 의한 에타놀 최고 생산성은 12g/$\ell$/h이었다.

  • PDF

Cephalosporium 발효시 균체의 형태학적 측면을 고려한 수학적 모델링 및 유가식 배양에의 응용 (Mathematical Modeling with Cell Morphology and Its Application to Fed-batch Culture in Cephalosporium Fermentation)

  • 김의용;유영제
    • 한국미생물·생명공학회지
    • /
    • 제19권5호
    • /
    • pp.521-535
    • /
    • 1991
  • Cephalosporium 배양시 균체의 형태학적 측면을 고려한 cephalosporin C 생합성에 대한 모델식을 제안하였다. 제한기질로 glucose와 methionine을 고려한 double-substrate 모델을 설정하였는데 여기서 glucose는 균체의 증식 정도를, methionine은 균체의 증식속도를 제어하게 된다. Cephalosporin C의 생산은 균체의 형태학적 분화와 밀접한 관계가 있다. 한편 cephalosporin C의 생산성을 증대시키기 위해 모델식을 유가식 배양에 응용하였다.

  • PDF

Palm Oil Mill Effluent 처리 시 Anaerobic Hybrid Reactor의 기질 제거 Kinetics 비교 (A Comparison of Substrate Removal Kinetics of Anaerobic Reactor systems treating Palm Oil Mill Effluent)

  • 오대양;신창하;김태훈;박주양
    • 상하수도학회지
    • /
    • 제25권6호
    • /
    • pp.971-979
    • /
    • 2011
  • Palm Oil Mill Effluent (POME) is the mixed organic wastewater generated from palm oil industry. In this study, kinetic analysis with treating POME in an anaerobic hybrid reactor (AHR) was performed. Therefore, the AHR was monitored for its performances with respect to the changes of COD concentrations and hydraulic retention time (HRT). Batch tests were performed to find out the substrate removal kinetics by granular sludge from POME. Modified Stover Kincannon, First-order, Monod, Grau second-order kinetic models were used to analyze the performance of reactor. The results from the batch test indicate that the substrate removal kinetics of granular sludge is corresponds to follow Monod's theory. However, Grau second-order model were the most appropriate models for the continuous test in the AHR. The second order kinetic constant, saturation value constant, maximum substrate removal rate, and first-order kinetic constant were 2.60/day, 41.905 g/L-day, 39.683 g/L-day, and 1.25/day respectively. And the most appropriate model was Grau second-order kinetic model comparing the model prediction values and measured COD concentrations of effluent, whereas modified Stover-Kincannon model showed the lowest correlation.

Styren과 acrylonitrile의 과상 공중합을 위한 회분식 반응기의 모델링 및 모사 (Modeling and simulation of a batch reactor for bulk copolymerization of styrene and acrylonitirle)

  • 유기윤;황우현;백종은;이현구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.207-212
    • /
    • 1994
  • A mathematical model is developed for a batch reactor in which the free radical bulk copolymerization of styrene and acrylonitrile takes place. In this model, we introduce the free volume theory to quantify the diffusion controlled termination and propagation reactions, and develop a model for the chain length dependent termination reaction in the context of the pseudo kinetic rate constant method(PKRCM). The simulation results from this model are found to be in good agreement with experimental data under different copolymerization conditions. The present model can predict both the copolymer composition and the number and weight average molecular weights. These kinetic approaches provide greater insight into the performance of the batch reactor used for the free radical bulk copolymerization of styrene and acrylonitirle.

  • PDF