• Title/Summary/Keyword: Batch Method

Search Result 786, Processing Time 0.026 seconds

Fabrication of Ceramic-based Graphene Membrane (CbGM) and Its Mass Transport Behavior for Water Treatment (수처리용 세라믹 기반 그래핀 맴브레인의 합성 및 물질이동특성)

  • Kim, Chang-Min;Park, Ki-Bum;Kim, Kwang-Soo;Kim, In S.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.11
    • /
    • pp.649-655
    • /
    • 2015
  • As a novel water treatment membrane, concept of ceramic-based graphene membrane (CbGM) was suggested, and its mass transport behavior was investigated. The selectivity of CbGM was given by graphene material which is consisting of active layer, only transmitting water, but rejecting salts. Filtration-assisted assembly methods was employed as a facile method to fabricate CbGM. Surface morphology and characteristics of CbGM were analyzed by scanning electron microscopy (SEM) and contact angle. In addition, three different kinds of solutes (i.e., NaCl, $MgCl_2$, $Na_2SO_4$) were tested in batch forward osmosis system to confirm the mass transport behavior. Through surface morphology analysis and mass transport behavior, it was revealed that interlocking between graphene layers is very important, rather than thickness of laminated graphene layers, in terms of selectivity to CbGM. All the anions in each solute showed faster transport than those of cations. In addition, solutes which have high ion valence charge ratio of anion to cation ($Z^-/Z^+$) was easier to be passed through CbGM. It indirectly implied that the surface charge of CbGM appear to be positive. In addition, It showed that surface charge of CbGM has a great role on mass transport, in particular, transport of matter having charges, generally ions.

A study on the optimization of Ion Exchange Resin operating conditions for removal of KCl from CKD extract (CKD 추출액내 KCl 제거를 위한 이온교환수지 조업조건 최적화 연구)

  • Jang, Younghee;Lee, Ye Hwan;Kim, Jiyu;Park, Il Gun;Lee, Ju-Yeol;Park, Byung Hyun;Kim, Seong-Cheol;Lee, Sang Moon;Kim, Sung Su
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.1088-1095
    • /
    • 2019
  • The CKD extract is wastewater from which KCl in CKD has been removed to reuse CKD as a cement raw material, and tried to reuse no extracts due to problems such as wastewater treatment facility expansion. As a result of removing KCl by the ion exchange method, the pH of the extract after ion exchange decreased from 12.7 to less than pH 2, and it was confirmed that H+ of the cation exchange resin was dissolved in the extract through ion exchange. In addition, the selectivity of the ion exchange was removed in the order of Ca2+, K+, it was determined that the increase in the contact time to remove the K+ ions. The batch system had a contact time of 6 times or more, compared to the continuous system, and showed 4 times of K+ removal efficiency and 7 times of Cl- removal efficiency. It was showed by analyzing the pH of the extract that more H+ of the cation exchange resin was extracted than OH- of anion exchange resin as the pH of the extract was changed.

Characterizing a full spectrum of physico-chemical properties of (20S)-and (20R)-ginsenoside Rg3 to be proposed as standard reference materials

  • Kim, Il-Woung;Sun, Won Suk;Yun, Bong-Sik;Kim, Na-Ri;Min, Dongsun;Kim, Si-Kwan
    • Journal of Ginseng Research
    • /
    • v.37 no.1
    • /
    • pp.124-134
    • /
    • 2013
  • The authentication of the physico-chemical properties of ginsenosides reference materials as well as qualitative and quantitative batch analytical data based on validated analytical procedures is a prerequisite for certifying good manufacturing practice (GMP). Ginsenoside Rb1 and Rg1, representing protopanaxadiol and protopanaxatriol ginsenosides, respectively, are accepted as marker substances in quality control standards worldwide. However, the current analytical methods for these two compounds recommended by Korean, Chinese, European, and Japanese pharmacopoeia do not apply to red ginseng preparations, particularly the extract, because of the relatively low content of the two agents in red ginseng compared to white ginseng. In manufacturing fresh ginseng into red ginseng products, ginseng roots are exposed to a high temperature for many hours, and the naturally occurring ginsenoside Rb1 and Rg1 are converted to artifact ginsenosides such as Rg3, Rg5, Rh1, and Rh2 during the heating process. The analysis of ginsenosides in commercially available ginseng products in Korea led us to propose the inclusion of the (20S)- and (20R)-ginsenoside Rg3, including ginsenoside Rb1 and Rg1, as additional reference materials for ginseng preparations. (20S)- and (20R)-ginsenoside Rg3 were isolated by Diaion HP-20 adsorption chromatography, silica gel flash chromatography, recrystallization, and preparative HPLC. HPLC fractions corresponding to those two ginsenosides were recrystallized in appropriate solvents for the analysis of physico-chemical properties. Documentation of those isolated ginsenosides was achieved according to the method proposed by Gaedcke and Steinhoff. The ginsenosides were subjected to analyses of their general characteristics, identification, purity, content quantification, and mass balance tests. The isolated ginsenosides showed 100% purity when determined by the three HPLC systems. Also, the water content was found to be 0.534% for (20S)-Rg3 and 0.920% for (20R)-Rg3, meaning that the net mass balances for (20S)-Rg3 and (20R)-Rg3 were 99.466% and 99.080%, respectively. From these results, we could assess and propose a full spectrum of physico-chemical properties of (20S)- and (20R)-ginsenoside Rg3 as standard reference materials for GMP-based quality control.

Oxidation and Removal of NO Emission from Ship Using Hydrogen Peroxide Photolysis (과산화수소 광분해를 이용한 선박 배가스 내 NO 산화흡수에 관한 연구)

  • Lee, Jae-Hwa;Kim, Bong-Jun;Jeon, Soo-Bin;Cho, Joon-Hyung;Kang, Min-Kyoung;Oh, Kwang-Joong
    • Clean Technology
    • /
    • v.23 no.3
    • /
    • pp.294-301
    • /
    • 2017
  • Air pollution associated with the $NO_x$ emission from the ship engines is becoming one of the major environmental concerns these days. As the regulations on ship pollutants are strengthened, the wet absorption method, for controlling complex pollutants in a confined space, has the advantage of simultaneously removing various pollutants, but the low solubility of nitrogen monoxide is drawback. In this study, for improving existing denitrification scrubber system, NO oxidation process by hydroxyl radical produced from irradiating UV light on $H_2O_2$ is suggested and the $H_2O_2$ decomposition rates and hydroxyl radical quantum yields were measured to find the optimum condition of $H_2O_2$ photolysis reaction. As a result, the optimum quantum yield and photolysis rate of $H_2O_2$ were 0.8798, $0.6mol\;h^{-1}$ at 8 W, 2 M condition, and oxidation efficiency of 1000 ppm NO gas was 40%. In batch system, NO removal efficiency has a range of 65.0 ~ 67.3% according to input gas concentration of 100 ~ 1500 ppm. This results indicate that the scrubber system using hydrogen peroxide photolysis can be applied as air pollution prevention facility of ship engines.

Evaluation of Postural Load during Liquid Weight Measurement Process Using Ratio of Exposure Time

  • Lee, Sung-Koon;Park, Peom
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.3
    • /
    • pp.445-453
    • /
    • 2012
  • The aim of this paper was to prove that if the risk level in combined tasks was improved through evaluation of postural load of liquid weight measurement process, the workload level and ratio of exposure time would be changed, and the time of process would be seen concurrently. Background: According to results of epidemiological studies conducted by Korea Occupational Safety & Health Agency, 122 musculoskeletal disorders occurred during 1992 to 2008, in which manufacturing industry covers 96(78.7%) of total. However, this is an insufficient level and only occupies 39% based on the South Korea's manufacturing standard industrial classification(246 industries). Method: Firstly, the number of batches weighed on one day(460min) was investigated based on the work performed and Weight measured weekly. VCR recording was taken based on the level of liquid ingredients prescribed for 1batch using the Camcorder. After dividing a 356 sec video into 1 sec using the screen capture function in Gom player, the job classification was performed by analyzing the change of working postures, which revealed 148 working postures. Time measurement was decided by time of the postures was being maintained. Then, the REBA analysis was performed for the working postures. The ratio of Exposure time was calculated based on the measurement time and REBA Score. In addition, the recommendations were designed and implementation was carried out for the working postures with REBA Score higher than 3. Finally, after the intervention, REBA measurement, time measurement, and ratio of exposure time were calculated for the comparison of works before and after improvement. Results: The number of work elements was decreased by 30.4% from 148 to 103 after improvement. The results of time measurement showed that the time was reduced by 46.3% from 356 sec to 191 sec. And the ratio of exposure time was also improved by 52.1% from 0% to 52.1% after improvement. Conclusion: The reduction of time was found to improve the productivity of management. Furthermore, because the reduction of ratio of exposure time and the improvement of workload level are the improvement of discomfort, it would contribute to the improvement of the worker's psychological working posture. Application: These results would contribute to musculoskeletal disease prevention and management performance. Further studies for other industries would be needed based on this case study.

Adsorption Equilibrium, Kinetics and Thermodynamic Parameters Studies of Bismarck Brown R Dye Adsorption on Granular Activated Carbon (입상 활성탄에 대한 비스마르크 브라운 R 염료의 흡착평형, 동력학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong-Jib
    • Applied Chemistry for Engineering
    • /
    • v.24 no.3
    • /
    • pp.327-332
    • /
    • 2013
  • Batch experiments were carried out for adsorption equilibrium, kinetics and thermodynamic parameters of the brilliant brown R onto granular activated carbon. The operating variables studied were the initial dye concentration, contact time and temperature. Experimental equilibrium adsorption data were fitted to Langmuir and Freundlich adsorption isotherm by linear regression method. The equilibrium process was well described by Freundlich isotherm model and from the determined separation factor (1/n), granular activated carbon could be employed as an effective treatment for the removal of bismarck brown R. From kinetic experiments, the adsorption processes were found to confirm the pseudo second order model with a good correlation and the adsorption rate constant ($k_2$) increased with increasing adsorption temperature. Thermodynamic parameters like the activation energy, change of Gibbs free energy, enthalpy, and entropy were also calculated to predict the nature of adsorption in the temperature range of 298~318 K. The activation energy was determined as 8.73 kJ/mol for 100 mg/L. It was found that the adsorption of bismarck brown R on the granular activated carbon was physical process. The negative Gibbs free energy change (${\Delta}G$ = -2.59~-4.92 kJ/mol) and the positive enthalpy change (${\Delta}H$ = +26.34 kJ/mol) are indicative of the spontaneous and endothermic nature of the adsorption process.

Partial Pressures of $CO_2\;and\;H_2$ and Fate of By-products in Anaerobic Bio-Hydrogen Fermentation (혐기성 생물수소 발효에서 이산화탄소 및 수소의 분압과 부산물의 거동)

  • Park, Woo-Shin;Kim, In-S.
    • KSBB Journal
    • /
    • v.20 no.6
    • /
    • pp.408-412
    • /
    • 2005
  • In a previous research, it has been found that it could be possible to increase the partial pressure of hydrogen and hydrogen yield by scavenging the $CO_2$ from the heads pace of reactor. In this research, the positive and negative effects of the $CO_2$ scavenging especially on the fate of by-products were investigated by a batch experiment. Production and conversion of by-products had critical relationships with hydrogen evolution and consumption. The maximum hydrogen fraction in the headspace was increased from 66.4 to 91.2% by removing the $CO_2$ in the headspace and the degradation rate of glucose was also enhanced. The removal of $CO_2$ effectively hindered the homoacetogenesis but caused several negative phenomena. The degradation of ethanol, one of the main products, was inhibited by the high partial pressure of hydrogen and/or the absence of $CO_2$. Also it was observed that other by-products such as propionate, propanol, acetone, etc. could not be degraded further after produced from glucose. On the other hand, solventogenesis was not observed in spite of the high hydrogen partial pressure apart from previous researches and it might hinder the excess production of acetate, which could cause overall inhibition. From this research, it could be implicated that the $CO_2$ scavenging method could be recommended if the fermentation was purposed to produce hydrogen and ethanol.

Isolation and Characterization of Dextrans Produced by Leuconostoc sp. strain JYY4 from Fermented Kimchi

  • Gu, Ji-Joong;Ha, Yoo-Jin;Yoo, Sun-Kyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.758-766
    • /
    • 2015
  • Dextran is a generic term for a bacterial exopolysaccharide synthesized from sucrose and composed of chains of D-glucose units connected by ${\alpha}$-1,6-linkages by using dextransucrases. Dextran could be used as vicosifying, stabilizing, emulsifying, gelling, bulking, dietary fiber, prebiotics, and water holding agents. We isolated new strain capable of producing dextran from Korean traditional kimchi and identified as Leuconostoc sp. strain JYY4. Batch fermentation was conducted in bioreactor with a working volume of 3 L. The media was MMY and 15% (w/v) sucrose. Mineral medium consisted of $3.0g\;KH_2PO_4$, $0.01g\;FeSO_4$, $H_2O$, $0.01g\;MnSO_4$, $4H_2O$, $0.2g\;MgSO_4\;7H_2O$, 0.01 g NaCl, $0.05g\;CaCl_2$ per 1 liter deionized water. The pH of media was initially adjusted to 6.0. The inoculation rate was 1.0% (v/v) of the working volume. Temperature was maintained at $28^{\circ}C$. The agitation rate was 100 rpm. The production pattern of dextran was associated with the cell growth. After 24 hr dextran reached its highest concentration of 59.4 g/L. The sucrose was consumed completely after 40 hr. Growth reached stationery phase when sucrose became limiting, regardless of the presence of fructose or mannitol. When the specific growth rate was 0.54 hr-1, utilization averaged 5.8 g/L-hr. The yield and productivity of dextran were 80% and 2.0 g/L-hr, respectively. Dextrans produced by were separated to two different size by an alcohol fraction method. The size of high molecular weight dextran (45% alcohol, v/v), less soluble dextran, was between MW 500,000 and 2,000,000. Soluble dextran (55% alcohol, v/v) was between 70,000 and 150,000. The molecular weight average of total dextran (70% alcohol, v/v) was between 150,000 to 500,000. The enzymatic hydrolyzates of total dextran of ATCC 13146 showed branched dextrans by Penicillium dextranase contained of glucose, isomaltose, isomaltotriose, and isomaltooligosaccharides greater than DP4 (degree of polymerization) that had branch points. Compounds greater than DP4 were branched isomaltooligosaacharides. Hydrolysates by the Lipomyces dextranase produced the same composition of oligosaccharides as those by Penicillin dextranase.

L-Methionine Production by Protoplast Fusion of Brevibacterium flavum ATCC 14067 and Corynebacterium glutamicum ATCC 13032 (Brevibacterium flavum ATCC 14067과 Corynebacterium glutamicum ATCC 13032의 원형질체 융합에 의한 L-Methionine의 생산)

  • Bin, Jae-Hoon;Chung, Soo-Ja;Shin, Dong-Bun;Ryu, Beung-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.561-567
    • /
    • 1991
  • This study was designed to investigate the productivity of L-methionine by the method of protoplast fusion between Brevibacterium flavum ATCC 14067 and Corynebacterium glutamicm ATCC 13032, and then L-methionine production was performed to continuous fermentation using the immobilized fusant cells. Mutants B. flavum K 104($thr\;met\;Km^{r}\;Et^{r}\;Sm^{r}\;Tm^{r}\;as\;genetic\;marker$) and C. glutamicum B 70($thr\;Hos\;Km^{r}\;Et^{r}\;Sm^{r}\;Tm^{r}as\;genetic\;marker$) were isolated by MNNG treatment. On the other hand, protoplast of mutants were formed to treat with lysis solution containing $500{\mu}g/ml$ of lysozyme. The ratios of protoplast formation and regeneration were 99% and $64{\sim}66%$ respectively. Fusion frequency between B. flavum K 104 and C. glutamicum B 70 showed the $3.5{\times}10^{5}$ in the 35% polyethylene glycol(PEG6000) containing 3% PVP solution. The productivity of L-methionine by fusant BFCG 37 immobilized with sodium alginate was 0.89 g/l the batch fermentation and was $18.75mg/^{1}hr\;^{1}$ on the continuous fermentation at $30^{\circ}C$ for 72 hr.

  • PDF

Removal of Radioactive Ions from Contaminated Water by Ion Exchange Resin (오염된 물로부터 이온교환수지를 이용한 방사성이온 제거)

  • Shin, Do Hyoung;Ju, Ko Woon;Cheong, Seong Ihl;Rhim, Ji Won
    • Applied Chemistry for Engineering
    • /
    • v.27 no.6
    • /
    • pp.633-638
    • /
    • 2016
  • In this study, we used three kinds of commercially available cation, anion, and mixed-ion exchange resins to separate radioactive ions from a polluted water containing Cs, I, and other radioactive ions. The experiment was conducted at a room temperature with a batch method, and a comparative analysis on the decontamination ability of each resin for the removal of Cs and I was performed by using different quantities of resins. The concentration was analyzed using ion chromatography and the ion exchange resin product from company D showed an overall high ion exchange ability. However, for most of the experiments when the amount of ion exchange resin was decreased, the decontamination ability of the resins against mass increased. When the mass of company D's cation exchange resin was small, the ion exchange ability against Cs and I ions were measured as 0.199 and 0.344 meq/g, respectively. When the mixed ion exchange resin was used, the ion exchange ability against I ions was measured as 0.33 meq/g. All in all, company D's ion exchange resins exhibited a relatively higher ion exchange ability particularly against I ions than that of other companies' exchange ions.