• Title/Summary/Keyword: Basin characteristics parameters

Search Result 180, Processing Time 0.027 seconds

Correlativity Analysis between Water Quality Items in the Dowoncheon Basin for Agricultural Watershed Management (농업유역관리를 위한 도원천유역의 수질항목간 상관성 분석)

  • Son Jae-Gwon;Choi Jin-Kyu;Koo Ja-Woong;Song Jae-Do;Cho Jae-Young;Kim Young-Ju
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.4
    • /
    • pp.77-86
    • /
    • 2006
  • This study was performed to investigate the stream water quality characteristics in the Dowoncheon basin of Dongjin River during the 12 months from January to December in 2005. Also, pollutant loads were calculated on the basis of the water quality and runoff results. The measured pH and EC of the stream water were ranged 6.48-7.32, $18.06{\sim}38.60{\mu}S/cm$, respectively. The concentration of DO, BOD, COD, SS, T-N and T-P were observed as 4.90-11.50 mg/L, 0.5-6.0 mg/L, 1.22-18.46 mg/L, 1.0-2,124.0 mg/L, 1.35-5.67 mg/L, 0.02-0.43 mg/L respectively. T-N showed low correlativity with other water quality parameters. However, T-P had very high correlativity with COD and SS. In the meantime, the runoff pollutant loads of T-N, T-P were estimated as 72,114 kg/yr, 5,027 kg/yr. In the case of the correlativity between runoff pollutant loads and concentrations, T-N did not show significant relationships, while T-P had significant relationships.

Assessment of streamflow variation considering long-term land-use change in a watershed

  • Noh, Joonwoo;Kim, Yeonsu;Yu, Wansik;Yu, Jisoo
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.3
    • /
    • pp.629-642
    • /
    • 2021
  • Land-use change has an important role in the hydrologic characteristics of watersheds because it alters various hydrologic components such as interception, infiltration, and evapotranspiration. For example, rapid urbanization in a watershed reduces infiltration rates and increases peak flow which lead to changes in the hydrologic responses. In this study, a physical hydrologic model the soil and water assessment tool (SWAT) was used to assess long-term continuous daily streamflow corresponding to land-use changes that occurred in the Naesungchun river watershed. For a 30-year model simulation, 3 different land-use maps of the 1990s, 2000s, and 2010s were used to identify the impacts of the land-use changes. Using SWAT-CUP (calibration and uncertainty program), an automated parameter calibration tool, 23 parameters were selected, optimized and compared with the daily streamflow data observed at the upstream, midstream and downstream locations of the watershed. The statistical indexes used for the model calibration and validation show that the model performance is improved at the downstream location of the Naesungchun river. The simulated streamflow in the mainstream considering land-use change increases up to -2 - 30 cm compared with the results simulated with the single land-use map. However, the difference was not significant in the tributaries with or without the impact of land-use change.

Uncertainty Evaluation of Baseflow Separation Filter methods: A Case Study of the Urmia Lake Basin in Iran

  • Nezhad, Somayeh Moghimi;Jun, Changhyun;Parisouj, Peiman;Narimani, Roya
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.135-135
    • /
    • 2022
  • In this study, we evaluated uncertainties in baseflow separation filter methods focusing on changes in recession constant (𝛼) values, which include Lynie & Holick (LH) algorithm, Chapman algorithm, Eckhardt filter, and EWMA filter. Here, we analyzed daily streamflow data at 14 stations in the Urmia Lake basin, Iran, from 2015 to 2019. The 𝛼 values were computed using three different approaches from calculating the slope of a recession curve by averaging the flow over all seasons, a correlation method, and a mean value of the ratio of Qt+1 to Qt. In addition to the 𝛼 values, the BFImax (maximum value of the baseflow index (BFI)) was determined for the Eckhardt filter through the backward filter method. As results, it indicates that the estimated baseflow is dependent upon the selection of filter methods, their parameters, and catchment characteristics at different stations. In particular, the EWMA filter showed the least changes in estimating the baseflow value by changing the 𝛼 value, and the Eckhardt filter and LH algorithm showed the highest sensitivity to this parameter at different stations.

  • PDF

Parameter Sensitivity Analysis of VfloTM Model In Jungnang basin (중랑천 유역에서의 VfloTM 모형의 매개변수 민감도 분석)

  • Kim, Byung Sik;Kim, Bo Kyung;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6B
    • /
    • pp.503-512
    • /
    • 2009
  • Watershed models, which are a tool for water cycle mechanism, are classified as the distributed model and the lumped model. Currently, the distributed models have been more widely used than lumped model for many researches and applications. The lumped model estimates the parameters in the conceptual and empirical sense, on the other hand, in the case of distributed model the first-guess value is estimated from the grid-based watershed characteristics and rainfall data. Therefore, the distributed model needs more detailed parameter adjustment in its calibration and also one should precisely understand the model parameters' characteristics and sensitivity. This study uses Jungnang basin as a study area and $Vflo^{TM}$ model, which is a physics-based distributed hydrologic model, is used to analyze its parameters' sensitivity. To begin with, 100 years frequency-design rainfall is derived from Huff's method for rainfall duration of 6 hours, then the discharge is simulated using the calibrated parameters of $Vflo^{TM}$ model. As a result, hydraulic conductivity and overland's roughness have an effect on runoff depth and peak discharge, respectively, while channel's roughness have influence on travel time and peak discharge.

Geotechnical Engineering Characteristics of Ulleung Basin Sediment, East Sea (동해, 울릉 분지 심해토의 지반공학특성)

  • Lee, Chang-Ho;Yun, Tae-Sup;J.C., Santamarina;Bahk, Jang-Jun;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.6
    • /
    • pp.17-29
    • /
    • 2009
  • There has been an increase in the investigation of deep sea sediments with a consequent increase in the amount of energy required to undertake these investigations. The geotechnical characteristics of Ulleung Basin sediment are explored by using depressurized specimens following methane production tests carried out on pressured core samples obtained at 2,100 m water depth and 110 m below sea floor. Geotechnical index tests, X-ray diffraction, and scanning electron microscope are conducted to identify the geotechnical index parameters, clay mineralogy, chemical composition, and microstructure of the sediments. Compressibility, and elastic and electromagnetic wave parameters are investigated for two samples by using a multi sensing instrumented oedometer cell. The strength chatracteristics are obtained by the direct shear tests. The dominant clay minerals are mostly kaolinite, illite, chlorite, and calcite. The SEM shows a well-developed flocculated structure of the microfossil. Void ratio, electrical resistivity, real permittivity, conductivity, and shear wave velocity show bi-linear behavior with the effective vertical stress: as the vertical effective stress increases. The friction angle obtained by the direct shear test is about $21^{\circ}$, which is similar to the value observed in the Ulleung Basin sediments. This study shows that the understanding of the behavior acting on the diatomaceous marine sediment is important because it often maintains the useful energy resources such as gas hydrate and so will be the new engineering field in the next generation.

Evaluation of the Clark Unit Hydrograph Parameters Considering Basin and Meteorologic at Conditions : 1. Selection and Analysis of Representative Storm Events (유역 및 기상상태를 고려한 Clark 단위도의 매개변수 평가: 1. 대표 호우사상의 선정 및 분석)

  • Yoo, Chul-Sang;Kim, Kee-Wook;Lee, Ji-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.2 s.175
    • /
    • pp.159-170
    • /
    • 2007
  • This study evaluated the parameters of Clark unit hydrograph (UH) estimated using the rainfall-runoff measurements and evaluated their variability. This also includes the quantification of basin and meteorological factors using probability density functions, selection of storm events with mean affecting factors, and derivation of average parameters of the Clark UH from storm events selected. Summarizing the results from this procedure are as follows. (1) It is not easy to avoid much uncertainty on the decision of runoff characteristics (that is, the concentration time and storage coefficient) even with some rainfall-runoff events are available. (2) As the distribution function of concentration time is very skewed, a simple arithmetic mean may lead a biased estimate. That is, the arithmetic mean based on the normal distribution can not be representative anymore. The mode may well be the representative in this case. On the other hand, the storage coefficient shows a symmetric distribution function, so the arithmetic mean may be used use for its representative. For the basin in this study, the concentration time in this study is estimated to be about 7 hours, and the storage coefficient about 22 hours.

Study of Correlation Between Flash Flood and GcIUH Parameters using GIS (GIS를 이용한 한계유량과 GcIUH 매개변수간의 상관성분석에 관한 연구)

  • Yang, In Tae;Park, Kheun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.4
    • /
    • pp.37-44
    • /
    • 2013
  • Concentrated localized torrential rains due to global warming and climate change have resulted in much water damage each year. GIS is used as a tool for predicting the peak-outflows caused by these regional torrential rains in mountainous rivers. However, the research of the resolution of the data is limited, and most of approaches are about hydrological geographic. This paper estimates the flood discharge needed for decision of standard rainfall of automatic rainfall warning system by using GIS with GcIUH model, and establishes the criteria of flash flood warning. It also has analyzed the terrain in river basin, extracted the morphological characteristics parameters of water shed such as stream width, channel slope, channel length, shape factor, and GcIUH parameters, and analyzed the relationship between them.

Analyis of stormwater and runoff characteristics in Anseongcun basin using HEC-HMS (HEC-HMS을 이용한 안성천 유역의 강우 유출 특성 분석)

  • Hwang, Byung-Gi;Yang, Seung-Bin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.17-24
    • /
    • 2018
  • The HEC-HMS model was applied to identify the rainfall-runoff processes for the Anseongchun basin, where the lower part of the stream has been damaged severely by tropical storms in the past. Modeling processes include incorporating with the SCS-CN model for loss, Clark's UH model for transformation, exponential recession model for baseflow, and Muskingum model for channel routing. The parameters were calibrated through an optimization technique using a trial and error method. Sensitivity analysis after calibration was performed to understand the effects of parameters, such as the time of concentration, storage coefficient, and base flow related constants. Two storm water events were simulated by the model and compared with the corresponding observations. Good accuracy in predicting the runoff volume, peak flow, and the time to peak flow was achieved using the selected methods. The results of this study can be used as a useful tool for decision makers to determine a master plan for regional flood control management.

Determination of Design Channel Width for from Medium Rivers in Geum-River Basin (금강 유역내 중규모 하천의 계획하폭 산정)

  • Myeng, Bong-Jae;Lee, Jong-Seok;Cha, Young-Kee
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.1 s.24
    • /
    • pp.47-56
    • /
    • 2007
  • The parameters are determined analyzing the hydraulic and hydrological characteristics of design floods, watershed, channel length, and river bed slope. The models are calibrated while the input hydrologic data are the field data of middle size areas in Guem river basin in Korea. The basic equations of design width are suggested by the multiple regression analysis and the results show excelled in comparisons as well as calibrations with the existing empirical formulas and the design criteria, respectively. The basic equations of design width in validation process is determined the regression functions with the design floods, watershed, channel length, river bed slope as the four parameters using other database in the same scales watershed. As a results, this study will be used for apply to determine of design width and river alignmentof the watershed in hydraulic fields.

Modification of Spatial Grid Based Distributed Model Considering River Basin Characteristics (유역특성을 반영한 공간격자기반의 분포형모형 개선)

  • Park, Jin Hyeog;Hur, Young Teck
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3D
    • /
    • pp.431-436
    • /
    • 2008
  • Recently, the rapid development of GIS technology has made it possible to handle a various data associated with spatially hydrological parameters with their attribute information. Therefore, there has been a shift in focus from lumped runoff models to distributed runoff models, as the latter can consider temporal and spatial variations of discharge. In this research, a distributed rainfall-runoff model based on physical kinematic wave for analysis of surface and river flow was used to simulate temporal and spatial distribution of long-term discharge. The snowfall and melting process model based on Hydro-BEAM was developed, and various hydrological parameters for input data of the model was extracted from basic GIS data such as DEM, land cover and soil map. The developed model was applied for the Shonai River basin(532) in Japan, which has sufficient meteorological and hydrological data, and displayed precise runoff results to be compared to the hydrograph.