• Title/Summary/Keyword: Basin Division

Search Result 550, Processing Time 0.03 seconds

A Phenology Modelling Using MODIS Time Series Data in South Korea (MODIS 시계열 자료(2001~2011) 및 Timesat 알고리즘에 기초한 남한 지역 식물계절 분석)

  • Kim, Nam-Shin;Cho, Yong-Chan;Oh, Seung-Hwan;Kwon, Hye-Jin;Kim, Gyung-Soon
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.3
    • /
    • pp.186-193
    • /
    • 2014
  • This study aimed to analyze spatio-temporal trends of phenological characteristics in South Korea by using MODIS EVI. For the phenology analysis, we had applied double logistic function to MODIS time-series data. Our results showed that starting date of phenology seems to have a tendency along with latitudinal trends. Starting date of phenology of Jeju Island and Mt. Sobeak went back for 0.38, 0.174 days per year, respectively whereas, Mt. Jiri and Mt. Seolak went forward for 0.32 days, 0.239 days and 0.119 days, respectively. Our results exhibited the fluctuation of plant phonological season rather than the change of phonological timing and season. Starting date of plant phenology by spatial distribution revealed tendency that starting date of mountain area was late, and basin and south foot of mountain was fast. In urban ares such as Seoul metropolitan, Masan, Changwon, Milyang, Daegu and Jeju, the phonological starting date went forward quickly. Pheonoligcal attributes such as starting date and leaf fall in urban areas likely being affected from heat island effect and related warming. Our study expressed that local and regional monitoring on phonological events and changes in Korea would be possible through MODIS data.

Effluent Characteristics of Nonpoint Source Pollutant Loads at Paddy Fields during Cropping Period (영농기 광역논으로부터 비점오염물질 유출 특성)

  • Han, Kuk-Heon;Kim, Jin-Ho;Yoon, Kwang-Sik;Cho, Jae-Young;Kim, Won-Il;Yun, Sun-Gang;Lee, Jeong-Taek
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.1
    • /
    • pp.18-24
    • /
    • 2007
  • Paddy fields are apparently nonpoint source pollution and influence water environment. In order to improve water quality in rivers or lakes, to low nutrient load from paddy fields are required. To establish comprehensive plan to control agricultural non-point source pollution, it is imperative to get a quantitative evaluation on pollutants and pollution load from paddy fields. A field monitoring study was carried out to investigate the water balance and losses of nutrients from fields in Sumjin river basin. The size of paddy fields was 115 ha and the fields were irrigated from a pumping station. The observed total nitrogen loads from paddy fields were larger than those of the unit loads determined by Ministry of Environment data (MOE). It is because the nitrogen fertilization level at the studied field was higher than the recommended rate and the high irrigation and subsequent drainage amount. On the contrary, total phosphorus loads were less than those addressed by MOE since phosphorus fertilization level was lower than that of standard level. Therefore, it was found that fertilization, irrigation, and drainage management are key factors to determine nutrient losses from paddy fields. When the runoff losses of nutrients were compared to applied chemical fertilizer, it was found that 42 to 60% of nitrogen lost via runoff while runoff losses of phosphorus account for 1.3 to 7.6% of the total applied amount during the entire year.

Efficient Conservation and Management of Waterside Parks by Promoting Ecology Awareness of Visitors (이용객 생태 인식 증진을 통한 수변공원의 효율적인 보전 및 관리)

  • Choi, Jong Yun;Kim, Seong-Ki;Kim, Jeong-Cheol;Yun, Hak Jong
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.2
    • /
    • pp.237-251
    • /
    • 2019
  • This study evaluated the ecological value of waterside parks by investigating the animal distribution and ecological feature in 92 waterside parks and analyzed the change of ecological awareness by users and non-users of waterside parks through ecological education and promotion based on the investigation results. The result confirmed inhabitation of various animals including 9 endangered species (Pernis ptilorhynchus orientalis, Accipiter soloensis, Falco subbuteo, Charadrius placidus, Felis bengalensis euptilura, Lutra lutra, Kaloula borealis, Polyphylla laticollis manchurica, and Leptalina unicolor) in waterside parks. Although waterside parks were constructed to be hydrophilic areas for human use, some of them with high natural characteristics are valued as biological habitat. We investigated user status in 5 areas (Daejeon, Sejong, Cheongju, Kongju, and Buyeo) located at Guem river basin to evaluate people's perception of waterside parks and carried out the ecological education and promotion based on the investigation result. The survey of 200 people showed that there were more users of waterside parks than non-users and that people in their 40's showed the highest use rate. The use frequency of waterside parks located in Daejeon and Cheongju was lower than in other areas (Sejong, Kongju, and Buyeo). We considered it was because Daejeon and Cheongju were urban areas and had relatively more leisure areas such as sports facilities and cafe than other areas, and thus the residents had a lower reliance on waterside parks. Moreover, users used waterside parks more frequently when they were nearer to users' residence. It is because most users perceived waterside parks as the leisure sports facility and thus preferred them to be within walking distance. The users' perception of waterside parks as the ecological space "to be preserved" increased after the ecological education and promotion. The change of the perception was higher among users (80%) than non-users (38%). Therefore, ecological education and promotion were potentially more effective to people who user waterside parks and thus had a higher understanding of the characteristics and specification. In conclusion, 1) although waterside parks were constructed for human use, some parts had high ecological value for the distribution of endangered species and outstanding natural beauty, and 2) it is necessary to change the perception of waterside parks from the hydrophilic attribute to the conservation attribute. Such change of perception would contribute to establishing waterside parks that feature both hydrophilic and conservation attributes in the management or upgrading plan of waterside parks in the future.

Distributional Characteristics of Fault Segments in Cretaceous and Tertiary Rocks from Southeastern Gyeongsang Basin (경상분지 남동부 일대의 백악기 및 제3기 암류에서 발달하는 단층분절의 분포특성)

  • Park, Deok-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.109-120
    • /
    • 2018
  • The distributional characteristics of fault segments in Cretaceous and Tertiary rocks from southeastern Gyeongsang Basin were derived. The 267 sets of fault segments showing linear type were extracted from the curved fault lines delineated on the regional geological map. First, the directional angle(${\theta}$)-length(L) chart for the whole fault segments was made. From the related chart, the general d istribution pattern of fault segments was derived. The distribution curve in the chart was divided into four sections according to its overall shape. NNE, NNW and WNW directions, corresponding to the peaks of the above sections, indicate those of the Yangsan, Ulsan and Gaeum fault systems. The fault segment population show near symmetrical distribution with respect to $N19^{\circ}E$ direction corresponding to the maximum peak. Second, the directional angle-frequency(N), mean length(Lm), total length(Lt) and density(${\rho}$) chart was made. From the related chart, whole domain of the above chart was divided into 19 domains in terms of the phases of the distribution curve. The directions corresponding to the peaks of the above domains suggest the directions of representative stresses acted on rock body. Third, the length-cumulative frequency graphs for the 18 sub-populations were made. From the related chart, the value of exponent(${\lambda}$) increase in the clockwise direction($N10{\sim}20^{\circ}E{\rightarrow}N50{\sim}60^{\circ}E$) and counterclockwise direction ($N10{\sim}20^{\circ}W{\rightarrow}N50{\sim}60^{\circ}W$). On the other hand, the width of distribution of lengths and mean length decrease. The chart for the above sub-populations having mutually different evolution characteristics, reveals a cross section of evolutionary process. Fourth, the general distribution chart for the 18 graphs was made. From the related chart, the above graphs were classified into five groups(A~E) according to the distribution area. The lengths of fault segments increase in order of group E ($N80{\sim}90^{\circ}E{\cdot}N70{\sim}80^{\circ}E{\cdot}N80{\sim}90^{\circ}W{\cdot}N50{\sim}60^{\circ}W{\cdot}N30{\sim}40^{\circ}W{\cdot}N40{\sim}50^{\circ}W$) < D ($N70{\sim}80^{\circ}W{\cdot}N60{\sim}70^{\circ}W{\cdot}N60{\sim}70^{\circ}E{\cdot}N50{\sim}60^{\circ}E{\cdot}N40{\sim}50^{\circ}E{\cdot}N0{\sim}10^{\circ}W$) < C ($N20{\sim}30^{\circ}W{\cdot}N10{\sim}20^{\circ}W$) < B ($N0{\sim}10^{\circ}E{\cdot}N30{\sim}40^{\circ}E$) < A ($N20{\sim}30^{\circ}E{\cdot}N10{\sim}20^{\circ}E$). Especially the forms of graph gradually transition from a uniform distribution to an exponential one. Lastly, the values of the six parameters for fault-segment length were divided into five groups. Among the six parameters, mean length and length of the longest fault segment decrease in the order of group III ($N10^{\circ}W{\sim}N20^{\circ}E$) > IV ($N20{\sim}60^{\circ}E$) > II ($N10{\sim}60^{\circ}W$) > I ($N60{\sim}90^{\circ}W$) > V ($N60{\sim}90^{\circ}E$). Frequency, longest length, total length, mean length and density of fault segments, belonging to group V, show the lowest values. The above order of arrangement among five groups suggests the interrelationship with the relative formation ages of fault segments.

Tectonic evolution of the Central Ogcheon Belt, Korea (중부 옥천대의 지구조 발달과정)

  • Kang, Ji-Hoon;Hayasaka, Yasutaka;Ryoo, Chung-Ryul
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.129-150
    • /
    • 2012
  • The tectonic evolution of the Central Ogcheon Belt has been newly analyzed in this paper from the detailed geological maps by lithofacies classification, the development processes of geological structures, microstructures, and the time-relationship between deformation and metamorphism in the Ogcheon, Cheongsan, Mungyeong Buunnyeong, Busan areas, Korea and the fossil and radiometric age data of the Ogcheon Supergroup(OSG). The 1st tectonic phase($D^*$) is marked by the rifting of the original Gyeonggi Massif into North Gyeonggi Massif(present Gyeonggi Massif) and South Gyeonggi Massif (Bakdallyeong and Busan gneiss complexes). The Joseon Supergroup(JSG) and the lower unit(quartzose psammitic, pelitic, calcareous and basic rocks) of OSG were deposited in the Ogcheon rift basin during Early Paleozoic time, and the Pyeongan Supergroup(PSG) and its upper unit(conglomerate and pelitic rocks and acidic rocks) appeared in Late Paleozoic time. The 2nd tectonic phase(Ogcheon-Cheongsan phase/Songnim orogeny: D1), which occurred during Late Permian-Middle Triassic age, is characterized by the closing of Ogcheon rift basin(= the coupling of the North and South Gyeonggi Massifs) in the earlier phase(Ogcheon subphase: D1a), and by the coupling of South China block(Gyeonggi Massif and Ogcheon Zone) and North China block(Yeongnam Massif and Taebaksan Zone) in the later phase(Cheongsan subphase: D1b). At the earlier stage of D1a occurred the M1 medium-pressure type metamorphism of OSG related to the growth of coarse biotites, garnets, staurolites. At its later stage, the medium-pressure type metamorphic rocks were exhumed as some nappes with SE-vergence, and the giant-scale sheath fold, regional foliation, stretching lineation were formed in the OSG. At the D1b subphase which occurs under (N)NE-(S)SW compression, the thrusts with NNE- or/and SSW-vergence were formed in the front and rear parts of couple, and the NNE-trending Cheongsan shear zone of dextral strike-slip and the NNE-trending upright folds of the JSG and PSG were also formed in its flank part, and Daedong basin was built in Korean Peninsula. After that, Daedong Group(DG) of the Late Triassic-Early Jurassic was deposited. The 3rd tectonic phase(Honam phase/Daebo orogeny: D2) occurred by the transpression tectonics of NNE-trending Honam dextral strike-slip shearing in Early~Late Jurassic time, and formed the asymmetric crenulated fold in the OSG and the NNE-trending recumbent folds in the JSG and PSG and the thrust faults with ESE-vergence in which pre-Late Triassic Supergroups override DG. The M2 contact metamorphism of andalusite-sillimanite type by the intrusion of Daebo granitoids occurred at the D2 intertectonic phase of Middle Jurassic age. The 4th tectonic phase(Cheongmari phase: D3) occurred under the N-S compression at Early Cretaceous time, and formed the pull-apart Cretaceous sedimentary basins accompanying the NNE-trending sinistral strike-slip shearing. The M3 retrograde metamorphism of OSG associated with the crystallization of chlorite porphyroblasts mainly occurred after the D2. After the D3, the sinistral displacement(Geumgang phase: D4) occurred along the Geumgang fault accompanied with the giant-scale Geumgang drag fold with its parasitic kink folds in the Ogcheon area. These folds are intruded by acidic dykes of Late Cretaceous age.

Geology of Athabasca Oil Sands in Canada (캐나다 아사바스카 오일샌드 지질특성)

  • Kwon, Yi-Kwon
    • The Korean Journal of Petroleum Geology
    • /
    • v.14 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • As conventional oil and gas reservoirs become depleted, interests for oil sands has rapidly increased in the last decade. Oil sands are mixture of bitumen, water, and host sediments of sand and clay. Most oil sand is unconsolidated sand that is held together by bitumen. Bitumen has hydrocarbon in situ viscosity of >10,000 centipoises (cP) at reservoir condition and has API gravity between $8-14^{\circ}$. The largest oil sand deposits are in Alberta and Saskatchewan, Canada. The reverves are approximated at 1.7 trillion barrels of initial oil-in-place and 173 billion barrels of remaining established reserves. Alberta has a number of oil sands deposits which are grouped into three oil sand development areas - the Athabasca, Cold Lake, and Peace River, with the largest current bitumen production from Athabasca. Principal oil sands deposits consist of the McMurray Fm and Wabiskaw Mbr in Athabasca area, the Gething and Bluesky formations in Peace River area, and relatively thin multi-reservoir deposits of McMurray, Clearwater, and Grand Rapid formations in Cold Lake area. The reservoir sediments were deposited in the foreland basin (Western Canada Sedimentary Basin) formed by collision between the Pacific and North America plates and the subsequent thrusting movements in the Mesozoic. The deposits are underlain by basement rocks of Paleozoic carbonates with highly variable topography. The oil sands deposits were formed during the Early Cretaceous transgression which occurred along the Cretaceous Interior Seaway in North America. The oil-sands-hosting McMurray and Wabiskaw deposits in the Athabasca area consist of the lower fluvial and the upper estuarine-offshore sediments, reflecting the broad and overall transgression. The deposits are characterized by facies heterogeneity of channelized reservoir sands and non-reservoir muds. Main reservoir bodies of the McMurray Formation are fluvial and estuarine channel-point bar complexes which are interbedded with fine-grained deposits formed in floodplain, tidal flat, and estuarine bay. The Wabiskaw deposits (basal member of the Clearwater Formation) commonly comprise sheet-shaped offshore muds and sands, but occasionally show deep-incision into the McMurray deposits, forming channelized reservoir sand bodies of oil sands. In Canada, bitumen of oil sands deposits is produced by surface mining or in-situ thermal recovery processes. Bitumen sands recovered by surface mining are changed into synthetic crude oil through extraction and upgrading processes. On the other hand, bitumen produced by in-situ thermal recovery is transported to refinery only through bitumen blending process. The in-situ thermal recovery technology is represented by Steam-Assisted Gravity Drainage and Cyclic Steam Stimulation. These technologies are based on steam injection into bitumen sand reservoirs for increase in reservoir in-situ temperature and in bitumen mobility. In oil sands reservoirs, efficiency for steam propagation is controlled mainly by reservoir geology. Accordingly, understanding of geological factors and characteristics of oil sands reservoir deposits is prerequisite for well-designed development planning and effective bitumen production. As significant geological factors and characteristics in oil sands reservoir deposits, this study suggests (1) pay of bitumen sands and connectivity, (2) bitumen content and saturation, (3) geologic structure, (4) distribution of mud baffles and plugs, (5) thickness and lateral continuity of mud interbeds, (6) distribution of water-saturated sands, (7) distribution of gas-saturated sands, (8) direction of lateral accretion of point bar, (9) distribution of diagenetic layers and nodules, and (10) texture and fabric change within reservoir sand body.

  • PDF

Distribution of Nutrients and Chlorophyll α in the Surface Water of the East Sea (동해 표층수 중 영양염과 Chlorophyll α의 분포 특성)

  • Yoon, Sang Chol;Yoon, Yi Yong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.2
    • /
    • pp.87-98
    • /
    • 2016
  • During the period between July 3 and 27 of 2009, water samples were collected from the Russian coast at a depth of 30m from 26 stations (including Ulleung and Japan basins) onboard the Russian survey vessel R/V Lavrentyev following 4 lines (D, R, E, and A). The samples were analyzed for nutrients and chlorophyll a contents. All parameters exhibited higher values in warm waters than in cold waters ($NH_4:1.8-fold$, $PO_4:1.8-fold$, $SiO_2:1.2-fold$, and chlorophyll-${\alpha}$:1.9-fold), except nitrates, which was 1.4-fold higher in cold waters than in warm waters. The horizontal distribution of ammonia, phosphate, and chlorophyll-${\alpha}$ was very similar to each other and showed the highest values in the waters near Russia, where a upwelling influence of cold current and bottom water prevails, while relatively low distribution was observed at the Ulleung Basin. On the other hand, nitrates showed the highest concentration at the Ulleung Basin, which is under the direct influence of the Tsushima warm water, and showed a gradual decrease northward. The N/P ratio showed the highest value in the Tsushima middle water, rather than in the North Korean Cold Water, the Tsushima Warm Water was the primary source of nitrate flow into the East Sea. However, the average concentration of phosphate in the warm waters was < $0.2{\mu}M$, thereby limiting phytoplankton growth, while a high concentration of phosphate in cold waters showed a direct correlation with chlorophyll-${\alpha}$. The results of principal component analysis for the identification of primary factors that influence the marine environment showed that principal component I was water temperature and principal component II was influenced chlorophyll-${\alpha}$ and nutrients. Therefore, Study area has greatest influenced by water temperature, and clearly distinct cold and warm water regions were observed in the East Sea.

Case Study of Fault Based on Drainage System Analysis in the Namdae Stream, Uljin Area (울진 남대천 유역의 수계분석을 통한 단층 규명 사례 연구)

  • Han, Jong-Gyu;Choi, Sung-Ja
    • Economic and Environmental Geology
    • /
    • v.44 no.5
    • /
    • pp.399-412
    • /
    • 2011
  • A DEM (digital elevation model) is produced using a digital topographic map and is now a commonly used tool in geologic surveys. This study aimed to clarify the relationship between knickpoints and faults in the Namdae stream by analyzing a DEM of the area. The Namdae drainage basin was divided into three subbasins (S1, S2 and S3) and their knickpoints developed for the middle to mid-upper regions were extracted from the DEM. The relative steepness Ks and concavity depending on the incision rate was higher in S1 than in S2 and S3 regions. We assumed that the incision rate caused by active erosion resulted from several faults crossing the basins rather than differences in rock types. There are 77 knickpoints in the Namdae drainage area, including the low-ranking branch, and 24 of thses are on the main river system (S1, S2, S3). Of these 77 knickpoints, 27 (38%) are matched by faults, and from the three basins, 13 (54%) correspond with faults, indicating that the knickpoints are connected closely with the faults. For example the average Ks (relative steepness), was 38.8, but in the overlapping area of the Samdang and Doocheon faults the Ks value was 42.99~43.39. We suggest that the faults resulted in geomorphic deformation such as the high-Ksn knickpoints. There was little evdence of relationship between the knickpoints and rock boundaries, with 54% of the knickpoints distributed on the S1, S2, and S3 subbasins. We concluded that the drainage basin knickpoints are the result of fault movement and are a type of geomorphologic deformation that could be useful for surveying Quaternary faults or fault extension.

The Distribution and Behavior of Medically-derived 131I in the Yeongsan River Basin (영산강수계 의료기원 방사성요오드(131I) 핵종의 분포 및 거동평가)

  • Kang, Tae-Woo;Han, Young-Un;Park, Won-Pyo;Song, Kwang-Duck;Hwang, Soon-Hong;Kang, Tae Gu;Kim, Kyung Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.4
    • /
    • pp.243-250
    • /
    • 2018
  • BACKGROUND: Recently, the use of $^{131}I$ for diagnosis and treatment of thyroid cancer has been increasing, and the radionuclide is continuously released into aquatic ecosystem. This study was carried out to investigate the $^{131}I$ concentrations in mainstreams, tributaries, and sewage wastewater treatment plants (SWTPs) of the Yeongsan River Basin and to identify their origins from the assessment of behaviors in the rivers. METHODS AND RESULTS: The water samples were collected from 19 sites including mainstreams (13), tributaries (4) and SWTPs (2). The $^{131}I$ concentration was measured using a gamma-ray spectrometry with a HPGe detector. The $^{131}I$ in SWTPs was detected mostly in the discharged effluent at the sampling sites. However, from the surface water of the rivers, $^{131}I$ was found only at two sites from each sampling period of the first (MS4 and MS10) and the second half (MS4 and MS7) of the year 2017. The concentrations of $^{131}I$ in the effluent discharged from SWTPs were in the range of 0.0870 to 3.87 Bq/L for SWTP1, and $^{131}I$ in the river revealed that it was not detected in the upper streams of the mainstreams and tributaries, while continuous detection was found in the SWTPs and downstream sites affected by the effluent. However, the concentration of $^{131}I$ decreased downstream, eventually becoming undetectable. Such behavior was closely related to the behavior found in the SWTPs. CONCLUSION: These results indicated that medically-derived $^{131}I$ was discharged to the river via sewage effluent at the SWTPs. It is necessary to evaluate the influence of aquatic ecosystems through continuous monitoring in the future.

The Maritime Geography of Korea Strait: Suggested Nomenclature and Cartographic Boundaries Derived from a Review of Historical and Contemporary Maps (국제학술지, 지도, 문서에 나타난 대한해협 해양지명과 경계에 대한 인식 변화)

  • DO-SEONG BYUN;BYOUNG-JU CHOI
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.28 no.2
    • /
    • pp.63-93
    • /
    • 2023
  • This study aims to examine the history of naming the strait between the Yellow and East China Seas and the East Sea to suggest a consistent nomenclature and to demarcate the geographic region of the strait. Although the strait is internationally known as 'Korea Strait', it is commonly referred to as the 'South Sea' in Korean common usage. This review ultimately recommends the use of 'Korea Strait' as an appropriate geographical name for this area. To support this recommendation, the historical boundaries typically assigned to the Korea Strait were investigated. We also analyzed the evolution of geographical labels assigned to Korea Strait and to the Western and Eastern Channels (labels given to the two maritime areas surrounding Tsushima). Resources for this analysis included historic maps and charts, International Hydrographic Organization Special Publications (S-23), and maps published in the Ocean Science Journal (OSJ) and Journal of Oceanography (JO), which are two international journals representing Korean and Japanese sources, respectively, from 2005 to 2021. In these two international journals, the most frequently used names assigned to the strait of interest were Korea Strait (appearing 42.9% of OSJ maps, and 7.5% of JO maps), and Tsushima Strait (appearing 60.4% of JO maps, and 0% of OSJ maps). Other names were South Sea and Korea Strait/Tsushima Strait. On maps in the two reviewed journals, the boundaries of Korea Strait were defined explicitly or implicitly in five different ways: a broad region between the Yellow and East China Seas and Ulleung Basin (Type 1), the region between Ulleung Basin and Tsushima (Type 2), the western channel of the strait (Type 3-1), the eastern channel of the strait (Type 3-2), and both the western and eastern channels of the strait (Type 4). Overall, Type 1 was the most frequently used boundary, taking up 71.4% of OSJ and 60.4% of JO maps. Lastly, we suggest in this paper that the current flowing through Korea Strait from the East China Sea to the East Sea should be labeled the 'Korea Strait Warm Current' to indicate its full path through the strait. Currently, this current is internationally referred to as the 'Tsushima Warm Current', which does not link well to the commonly used geographic name of the strait.