• Title/Summary/Keyword: Basic computation

Search Result 252, Processing Time 0.023 seconds

A Test of Correspondence Model with the HorizonRun 4 Simulation

  • Park, Jisook;Kim, Juhan;Park, Changbom;Kim, Sungsoo S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.74.1-74.1
    • /
    • 2015
  • 'The one to one correspondence model' defines the relation between a dark matter halo (DM halo) and a galaxy. A basic assumption of this model is that a more massive DM subhalo hosts a brighter galaxy. In a more improved version of the model we may be able to assign a mock galaxy with a morphological type. In this study, we are building a mock galaxy catalog using massive halo merging trees from the Horizon Run 4. We test various merging models to calculate the merging time scale of a subhalo along its merging tree. And we obtain the halo mass functions for major subhalos and satellite subhalos, separately, and compare them with the observed luminosity functions of major galaxies and satellite galaxies from the SDSS group catalog. Furthermore, we are going to make a range of mock galaxy catalogs and investigate their properties, such as spatial distributions, environmental effects, and morphologies.

  • PDF

A Study on a Computation of the Meridian Length (자오선 길이의 계산에 관한 연구)

  • 박경환;김정희;안기원
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 1997.12a
    • /
    • pp.35-50
    • /
    • 1997
  • In geodesy, a calculation of the meridian length is a basic thing. Its principle is very simple, but no exact closed formula exists and its expression has rather long terms. In Korea, the formula has been seemingly adapted from those of Japan which also use the Bessel ellipsoid as a reference. However, a formula from a noticeable reference of Japan is found to have wrong coefficient values. In this study, a formula for the meridian length with correct coefficient values is suggested and the results on different computing bases are also shown. This formula has terms simpler than the one in the Korean Surveying Act (Law) which has the same coefficients in that Japanese reference.

  • PDF

Speeding Up Neural Network-Based Face Detection Using Swarm Search

  • Sugisaka, Masanori;Fan, Xinjian
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1334-1337
    • /
    • 2004
  • This paper presents a novel method to speed up neural network (NN) based face detection systems. NN-based face detection can be viewed as a classification and search problem. The proposed method formulates the search problem as an integer nonlinear optimization problem (INLP) and expands the basic particle swarm optimization (PSO) to solve it. PSO works with a population of particles, each representing a subwindow in an input image. The subwindows are evaluated by how well they match a NN-based face filter. A face is indicated when the filter response of the best particle is above a given threshold. To achieve better performance, the influence of PSO parameter settings on the search performance was investigated. Experiments show that with fine-adjusted parameters, the proposed method leads to a speedup of 94 on 320${\times}$240 images compared to the traditional exhaustive search method.

  • PDF

J-integral Analysis by P-version Crack Model (P-version 균열모델에 의한 J-적분해석)

  • 이채규;우광성;윤영필
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.10a
    • /
    • pp.38-45
    • /
    • 1994
  • P-version finite element model for the computation of stress intensity factors in two dimensional cracked panels by J-integral method is presented. The proposed model is based on high order theory and hierarchical shape function. The displacements fields are defined by integrals of Legendre polynomials which can be classified into three part such as basic mode, side mode, integral mode. The stress intensity factors are computed by J-integral method. The example models for validating the proposed p-version model are centrally cracked panel, single and double edged crack in a rectangular panel under pure Mode I. And the analysis results are compared with those by the h-version of FEM and empirical solutions in literatures. Very good agreement with the existing solution are shown.

  • PDF

Design of LSB Multiplier using Cellular Automata (셀룰러 오토마타를 이용한 LSB 곱셈기 설계)

  • 하경주;구교민
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.7 no.3
    • /
    • pp.1-8
    • /
    • 2002
  • Modular Multiplication in Galois Field GF(2/sup m/) is a basic operation for many applications, particularly for public key cryptography. This paper presents a new architecture that can process modular multiplication on GF(2/sup m/) per m clock cycles using a cellular automata. Proposed architecture is more efficient in terms of the space and time than that of systolic array. Furthermore it can be efficiently used for the hardware design for exponentiation computation.

  • PDF

Computation of Non-Linear Wave Height Distribution in the Seogwipo Harbor Using Finite Element Method

  • Kim, Nam-Hyeong;Hur, Young-Teck;Young, Yin-Lu
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.6
    • /
    • pp.32-37
    • /
    • 2003
  • In this paper, finite element method is applied for the numerical analysis of wave height distribution. The mild-slope equation is used as the basic equation. The key of this model is to impose the effect of nonlinear waves. Numerical results are presented and agreed well with the results from experimental measurements and other numerical analysis. The present method to determine wave height distribution can be broadly utilized for the analysis of new harbor and port designs in the future.

A Basic Study of Applying the Energy Function Using Time-domain Transient Stability Program (시간영역 과도안정도 프로그램을 이용한 에너지 함수 적용 기초 연구)

  • Kim, Dong-Joon;Moon, Young-Hwan;Shin, Jung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2007.11b
    • /
    • pp.199-201
    • /
    • 2007
  • This paper presents new contingency screen and ranking method using the time-domain simulation program and energy function. Since the suggested method is very simple and has fast computation time to calculate energy margin and list the contingency according to the its severity, it can be used in connection with the on-line TSA which has accurate binary search algorithm in parallel or distributed computing environment. The suggested method has been tested by appling to 3-machine and 9-bus system, and its effectiveness has been verified.

  • PDF

MOCK THETA FUNCTIONS OF ORDER 2 AND THEIR SHADOW COMPUTATIONS

  • Kang, Soon-Yi;Swisher, Holly
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.2155-2163
    • /
    • 2017
  • Zwegers showed that a mock theta function can be completed to form essentially a real analytic modular form of weight 1/2 by adding a period integral of a certain weight 3/2 unary theta series. This theta series is related to the holomorphic modular form called the shadow of the mock theta function. In this paper, we discuss the computation of shadows of the second order mock theta functions and show that they share the same shadow with a mock theta function which appears in the Mathieu moonshine phenomenon.

MoTE-ECC Based Encryption on MSP430

  • Seo, Hwajeong;Kim, Howon
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.3
    • /
    • pp.160-164
    • /
    • 2017
  • Public key cryptography (PKC) is the basic building block for the cryptography applications such as encryption, key distribution, and digital signature scheme. Among many PKC, elliptic curve cryptography (ECC) is the most widely used in IT systems. Recently, very efficient Montgomery-Twisted-Edward (MoTE)-ECC was suggested, which supports low complexity for the finite field arithmetic, group operation, and scalar multiplication. However, we cannot directly adopt the MoTE-ECC to new PKC systems since the cryptography is not fully evaluated in terms of performance on the Internet of Things (IoT) platforms, which only supports very limited computation power, energy, and storage. In this paper, we fully evaluate the MoTE-ECC implementations on the representative IoT devices (16-bit MSP processors). The implementation is highly optimized for the target platform and compared in three different factors (ROM, RAM, and execution time). The work provides good reference results for a gradual transition from legacy ECC to MoTE-ECC on emerging IoT platforms.

Analysis on Aerodynamic Characteristics of the CRW Air-Vehicle (CRW 비행체의 공력특성 해석)

  • Choi Seong Wook;Kim Jai Moo
    • Journal of computational fluids engineering
    • /
    • v.8 no.4
    • /
    • pp.26-33
    • /
    • 2003
  • Smart UAV Development Program, one of the 21c Frontier R&D Program sponsored by MOST(Ministry of Science and Technology), was launched in 2002 As an air vehicle for the Smart UAV, CRW(Canard Rotor/wing) concept was one of the candidates compared in trade-off study. The CRW concept has not only been proven completely but its aerodynamic characteristics not known in detail yet. Two calculation methods were adopted in this study to obtain aerodynamic data for the CRW First method was the superpose DATCOM method which is capable of three lifting sufaces, and second one is the full Navier-Stokes computation around CRW configuration using overset grid method. Basic aerodynamic characteristics of the CRW configuration was analyzed and the minimum drag level with lift to drag ratio is presented. The peculiar flow characteristics around rotor/wing and hub were also examined and considered in the configuration design.