• Title/Summary/Keyword: Basic Unit of Carbon Emissions

Search Result 8, Processing Time 0.017 seconds

Calculation of Basic Unit of Carbon Emissions in Construction Stage of the Road Infrastructure (도로시설물의 전과정 탄소배출량 산정을 위한 시공단계 탄소배출원단위 구축)

  • Kwak, In-Ho;Kim, Kun-Ho;Cho, Woo-Hyoung;Park, Kwang-Ho;Hwang, Young-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.2
    • /
    • pp.107-112
    • /
    • 2015
  • Carbon emissions in construction stage is very high because lots of construction machines and materials are required to be used at a road construction stage. Many researcher carried out application of carbon emissions estimation methodology during the life cycle of road infrastructure in order to reduce greenhouse gas emissions in the road sector. But the calculation of carbon emissions is difficult because data collection is difficult and calculation procedure is complex. In this study, a basic unit of carbon emissions in construction stage of the road infrastructure was developed in order to get the quantitative determination of carbon that occurs. Carbon emissions of the expressway and common state road was calculated by using the basic unit of carbon emissions and application plan of basic unit of carbon emissions are presented.

Calculation of Basic Unit of Carbon Emissions in Operation and Maintenance Stage of Road Infrastructure (도로시설물 운영 및 유지관리단계의 탄소배출원단위 구축)

  • KWAK, In Ho;KIM, Kun Ho;WIE, Dae Hyung;PARK, Kwang Ho;HWANG, Young Woo
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.3
    • /
    • pp.237-246
    • /
    • 2015
  • Operation and Maintenance in road infrastructure is repetitive carbon emissions activities to preserve the road in its originally constructed condition. In the view of road planning and construction, operation, and maintenance of life cycle, operation and maintenance stage quantification of carbon emissions is very important because it is easily accessible activities to reduce carbon emissions in road infrastructure that existing and new road. However, carbon emissions estimation in operation and maintenance stage is yet to do, because data collection is so hard and carbon emissions estimation methodology is very complicated. In this study, a basic unit of carbon emission in the operation and maintenance stage of the road infrastructure was developed in order to get the quantitative determination of carbon that occurring. Carbon emissions of the Expressway and Common state road was calculated by using the basic unit of carbon emission and application plan of basic unit of carbon emission are presented.

LCCO2 analysis of wood-containing printing paper by mixed ratio of de-inked pulp and BTMP (DIP 및 BTMP 혼합비율에 따른 인쇄용지의 LCCO2 분석)

  • Seo, Jin Ho;Kim, Hyoung Jin;Chung, Sung Hyun;Park, Kwang Ho
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.2
    • /
    • pp.46-55
    • /
    • 2013
  • Recently, there are growing interests on carbon emissions related in climate change which is worldwide emerging important issue. Some research works are now carrying out in order to reduce the carbon emission in pulp and paper industries by the synthesis of precipitated calcium carbonate using the exhaust carbon dioxide from combustion furnace or incinerator. However, for solving the original problems on carbon emission, we need to consider the analysis of basic methodology on $CO_2$ through the process efficiencies. There are two general tools for carbon emissions; one is the greenhouse gas inventory and the other is $LCCO_2$ method which is applied to particular items of raw materials and utilities in unit process. In this study, the carbon emissions in wood-containing printing paper production line were calculated by using $LCCO_2$ method. The general materials and utilities for paper production, such as fibrous materials, chemical additives, electric power, steam, and industrial water were analyzed. As the results, $Na_2SiO_3$ showed the highest loads in carbon emissions, and the total amount of carbon emissions was the highest in electricity. In the production line of printing paper using de-inked pulp and BTMP, as the mixing ratio of DIP was higher, the carbon emissions were decreased because of high use of electric power in TMP process.

An Analysis of Local Quantity of Carbon Absorption, Fixation and Emission by Using GIS

  • Kim, Hyeon-Tae;Moon, Byeong-Eun;Choi, Eun-Gyu;Kim, Chi-Ho;Ryou, Young-Sun;Kim, Jong-Goo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.1
    • /
    • pp.40-48
    • /
    • 2014
  • Due to increasing greenhouse gas emissions, global warming and abnormal weather phenomena it has become important on a national level to keep a count of greenhouse gases being emitted. We want to take advantage of any selected area, as the basic data for the calculation of greenhouse gas emissions, Forest and Grassland, Paddy fields, and Fields(crops), Greenhouse(crops), Pig farm, Cattle farm, Farm household(populations, agricultural machinery) and Vehicle, the basic building blocks shots with a small amount of per-unit basis, the statistics calculated based on regional carbon emissions through the literature and experimental. Carbon absorption 772,960 ton C/year, amount of fixation 487,477 ton C/year, amount of emission 1,112,607 ton C/year were noted in Gimje-si, and amount of carbon absorption 55,559 ton C/year, amount of fixation 25,864 ton C/year, amount of emissions 58,355 ton C/year in Gongdeok-myeon, respectively. The carbon absorption at Hwangsan-ri is 25,107 ton C/year, fixation 4,301 ton C/year, and emission 20,330 ton C/year respectively. We were able to estimate the amount of carbon according to the specific characteristics of each unit village, then expanding it to a large-scale and comparative analysis, therefore we were able to obtain basic data on the national levels of carbon absorption.

Environmental analysis of present and future fuels in 2D simple model marine gas tubines

  • El Gohary, M. Morsy
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.4
    • /
    • pp.559-568
    • /
    • 2013
  • Increased worldwide concerns about fossil fuel costs and effects on the environment lead many governments and scientific societies to consider the hydrogen as the fuel of the future. Many researches have been made to assess the suitability of using the hydrogen gas as fuel for internal combustion engines and gas turbines; this suitability was assessed from several viewpoints including the combustion characteristics, the fuel production and storage and also the thermodynamic cycle changes with the application of hydrogen instead of ordinary fossil fuels. This paper introduces the basic environmental differences happening when changing the fuel of a marine gas turbine from marine diesel fuel to gaseous hydrogen for the same power output. Environmentally, the hydrogen is the best when the $CO_2$ emissions are considered, zero carbon dioxide emissions can be theoretically attained. But when the $NO_x$ emissions are considered, the hydrogen is not the best based on the unit heat input. The hydrogen produces 270% more $NO_x$ than the diesel case without any control measures. This is primarily due to the increased air flow rate bringing more nitrogen into the combustion chamber and the increased combustion temperature (10% more than the diesel case). Efficient and of course expensive $NO_x$ control measures are a must to control these emissions levels.

Inventory of Carbon Dioxide Emission in Carbon Cycle Community (The case study on Gyeongbuk Bonghwa-gun Chunyang-myeon Seobyeok-ri) (탄소순환마을의 이산화탄소배출량 조사연구 (경상북도 봉화군 춘양면 서벽리를 중심으로))

  • Kim, Hyo-Jin;Byun, Woo-Hyuk;Lim, Min-Woo;Park, Won-Kyoung;Kim, Min-Su
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.4
    • /
    • pp.597-602
    • /
    • 2010
  • The most basic matter to establish forest carbon circulation village is statistic on greenhouse gas emissions. But currently, although there is statistic on greenhouse gas emissions in the level of city or province, there is not statistic on greenhouse gas emission in village unit. According to the results, The model area is located in Seobyeok-ri, Chunyang-myeon, Bonghwa-gun, Gyeongsangbuk-do, the total $CO_2$emissions caused by energy used in the model area was $1,755tCO_2$. Heating accounts for 55% of total emissions followed by 23% for power and 22% for vehicles. The model area emitted $572tCO_2$ due to rice growing and livestock raising, accounting for approximately 24.5% of total $CO_2$ emissions. It is expected that a reduction of as much as $884tCO_2$ emissions will be made from the current $964tCO_2$ to a level of 1/12th that amount, or $80tCO_2$ by replacing heating energy currently used in the model area with wood bioenergy such as wood chips or pellets. In addition, carbon emission reduction is expected for both heating and power by replacing the power consumption in houses, buildings, and street lights with solar power.

Assessment of Carbon Emission for Quantification of Environmental Load on Structural Glued Laminated Timber in Korea (국산 구조용 집성재의 환경부하 정량화를 위한 온실가스 배출량 분석)

  • Chang, Yoon-Seong;Kim, Sejong;Son, Whi-Lim;Lee, Sang-Joon;Shim, Kug-Bo;Yeo, Hwanmyeong;Kim, Kwang-Mo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.449-456
    • /
    • 2016
  • This study was aimed to quantify the amount of carbon dioxide emissions and to suggest suitable plans which consider the carbon emission reduction in the manufacturing process of the domestic structural glued laminated timber. Field investigation on two glued laminated timber manufacturers was conducted to find out material flow input values such as raw materials, transportation, manufacturing process, and energy consumption during manufacturing process. Based on the collected data and the relevant literatures about life cycle inventory (LCI), the amount of carbon dioxide emission per unit volume was quantified. Results show that the carbon dioxide emissions for sawing, drying and laminating process are 31.0, 109.0, 94.2 kg $CO_2eq./m^3$, respectively. These results show 13% lesser amount of total carbon dioxide emissions compared with the imported glued laminated timber in Korea. Furthermore, it was decreased about 37% when the fossil fuel would be replaced with biomass fuel in drying process. Findings from this study is effectively used as the basic data on the life cycle assessment of wooden building.

A Study on the Greenhouse Gas Intensity of Building Groups and Regional in Korea (국내 에너지다소비건물의 용도별.지역별 온실가스 배출원단위분석 연구)

  • Lee, Chung-Kook;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.3
    • /
    • pp.162-169
    • /
    • 2012
  • Our country set the mid-term reduction goal of greenhouse gases up to 2020 in accordance with Bali roadmap agreed in 2007 through the negotiation with UNFCCC in 2009 and specified the proper goal as by the Basic Act on Green Growth that went into effect at April, 2010. First of all the enlargement of green building construction has been suggested as a worldwide strategy to achieve the green house gas reduction. Building area is one of most important sectors for the countermeasure of climate change agreement and the achievement of national green house gas reduction goal and the need to reduce its green house gases has been increased accordingly. The objective of the study is to examine the status and characterization of mass energy consumption local governmental buildings' green house gas emissions depending on usage (hotel, school, apartment, hospital) through the green house gas emission source unit analysis. The result indicated that the energy source unit was proportional to green house gas source unit and hotel showed the highest green house gas emission source unit per open area of construction unit, followed by hospital, apartment, and then school. In case of apartment, green house gas emission source unit per open area of construction unit decreased as year went on. Meanwhile school building showed a striking increase in the annual energy source unit.