• Title/Summary/Keyword: Basic Korean medicine

Search Result 3,395, Processing Time 0.031 seconds

Genetic Diversity of the Original Plant for Taraxaci Herba, Taraxacum spp. by the Analysis of AFLP (AFLP 분석을 통한 포공영 기원식물 민들레의 유전 다양성 분석)

  • Kim, Wook Jin;Moon, Byeong Cheol;Ji, Yunui;Lee, Young Mi;Kim, Ho Kyoung
    • Korean Journal of Medicinal Crop Science
    • /
    • v.21 no.4
    • /
    • pp.247-254
    • /
    • 2013
  • Collected germplasms of five representative dandelion species (Taraxacum ohwianum, T. platycarpum, T. platypecidum, T. officinale, and T. coreanum) were 104 lines from different habitates in Korea and China. Their genetic diversity was analyzed by genomic fingerprinting method using amplified fragment length polymorphism (AFLP). AFLP results of 6 primer combinations were revealed 1,176 total DNA fragments and 523 polymorphic bands with a 44.4% ratio of polymorphism. On the basis of similarity coefficient analysis by unweight pair group method with arithmetic averages (UPGMA), 104 dandelion germplasm lines were ranged from 0.64 to 0.99 and clustered distinct five group depending on the species. Furthermore, a principal coordinate analysis (PCA) by the application of multi-variate analysis indicated significantly greater differences among species than geographical origins.

Sodium selenite-induced activation of DAPK promotes autophagy in human leukemia HL60 cells

  • Jiang, Qian;Li, Feng;Shi, Kejian;Yang, Yang;Xu, Caimin
    • BMB Reports
    • /
    • v.45 no.3
    • /
    • pp.194-199
    • /
    • 2012
  • Autophagy has been suggested as a possible mechanism for non-apoptotic death despite evidence from many species that autophagy represents a survival strategy of cells under stress. From our previous findings that supranutritional doses of sodium selenite induced apoptosis in human leukemia cells, now we show autophagic cell death occurred after selenite exposure in HL60, suggested an alternative mechanism for the potential therapeutic properties of selenite. Additionally, Death-associated Protein Kinase (DAPK) performed a significantly increased expression during this process, concomitantly with gradually decreased phosphorylation at $Ser^{308}$. We further reveal that the up-regulation of DAPK which depends on selenite-activated ERK had no effect on autophagy. However, activation of DAPK via PP2A-mediated dephosphorylation at $Ser^{308}$ serves as a new strategy for autophagy induction. In conclusion, these results indicate that PP2A-mediated activated DAPK sensitizes HL60 cells to selenite, ultimately triggers autophagic cell death pathway to commit cell demise.