• Title/Summary/Keyword: Baseline Structure

Search Result 227, Processing Time 0.024 seconds

Statistical damage classification method based on wavelet packet analysis

  • Law, S.S.;Zhu, X.Q.;Tian, Y.J.;Li, X.Y.;Wu, S.Q.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.4
    • /
    • pp.459-486
    • /
    • 2013
  • A novel damage classification method based on wavelet packet transform and statistical analysis is developed in this study for structural health monitoring. The response signal of a structure under an impact load is normalized and then decomposed into wavelet packet components. Energies of these wavelet packet components are then calculated to obtain the energy distribution. Statistical similarity comparison based on an F-test is used to classify the structure from changes in the wavelet packet energy distribution. A statistical indicator is developed to describe the damage extent of the structure. This approach is applied to the test results from simply supported reinforced concrete beams in the laboratory. Cases with single and two damages are created from static loading, and accelerations of the structure from under impact loads are analyzed. Results show that the method can be used with no reference baseline measurement and model for the damage monitoring and assessment of the structure with alarms at a specified significance level.

Toward residential building energy conservation through the Trombe wall and ammonia ground source heat pump retrofit options, applying eQuest model

  • Ataei, Abtin;Dehghani, Mohammad Javad
    • Advances in Energy Research
    • /
    • v.4 no.2
    • /
    • pp.107-120
    • /
    • 2016
  • The aim of this research is to apply the eQuest model to investigate the energy conservation in a multifamily building located in Dayton, Ohio by using a Trombe wall and an ammonia ground source heat pump (R-717 GSHP). Integration of the Trombe wall into the building is the first retrofitting measure in this study. Trombe wall as a passive solar system, has a simple structure which may reduce the heating demand of buildings significantly. Utilization of ground source heat pump is an effective approach where conventional air source heat pump doesn't have an efficient performance, especially in cold climates. Furthermore, the type of refrigerant in the heat pumps has a substantial effect on energy efficiency. Natural refrigerant, ammonia (R-717), which has a high performance and no negative impacts on the environment, could be the best choice for using in heat pumps. After implementing the eQUEST model in the said multifamily building, the total annual energy consumption with a conventional R-717 air-source-heat-pump (ASHP) system was estimated as the baseline model. The baseline model results were compared to those of the following scenarios: using R-717 GSHP, R410a GSHP and integration of the Trombe wall into the building. The Results specified that, compared to the baseline model, applying the R-717 GSHP and Trombe wall, led to 20% and 9% of energy conservation in the building, respectively. In addition, it was noticed that by using R-410a instead of R-717 in the GSHP, the energy demand increased by 14%.

A Design of Acoustic-based Underwater Image Transmission System Based on the Multipath Analysis. (Multipath를 고려한 수중영상 전송 시스템 설계)

  • 임용곤;박종원;최영철
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.1
    • /
    • pp.202-211
    • /
    • 2001
  • This paper deals with an analysis of multipath which affect a transmission performance in underwater acoustic channel. Underwater acoustic channel with multipath structure is introduced to mathematical modelling for a basin environment. In this paper, SMR(Signal to Multipath Ratio) which is defined as a parameter of multipath's effect is presented as a mathematical equation, and the equation of SMR is simulated by MATLAB program. Furthermore, this paper is also dealt with an implementation of modulation and demodulation system for acoustic transmission. Acoustic Transmission is limited by frequency bandwidth, so $\pi/4 QPSK$(Quadrature Phase Shift Keying) methods which is very useful at frequency ]imitation and FM(Frequency Modulation) are used at acoustic communication system. This implemented hybrid modulation/demodulation system is used as an analog board of image transmission system. In this system, adaptive equalization for reducing the multipath effect and baseline JPEG used for an image compressing are also stated.

  • PDF

Imaging of a Defect in Thin Plates Using the Time Reversal of Single Mode Lamb Wave: Simulation

  • Jeong, Hyun-Jo;Lee, Jung-Sik;Bae, Sung-Min;Lee, Hyun-Ki
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.3
    • /
    • pp.261-270
    • /
    • 2010
  • This paper presents an analytical investigation for a baseline-free imaging of a defect in plate-like structures using the time-reversal of Lamb waves. We first consider the flexural wave (A0 mode) propagation in a plate containing a defect, and reception and time reversal process of the output signal at the receiver. The received output signal is then composed of two parts: a directly propagated wave and a scattered wave from the defect. The time reversal of these waves recovers the original input signal, and produces two additional side bands that contain the time-of-flight information on the defect location. One of the side band signals is then extracted as a pure defect signal. A defect localization image is then constructed from a beamforming technique based on the time-frequency analysis of the side band signal for each transducer pair in a network of sensors. The simulation results show that the proposed scheme enables the accurate, baseline-free detection of a defect, so that experimental studies are needed to verify the proposed method and to be applied to real structure.

Heating Energy Saving and Cost Benefit Analysis According to Low-Income Energy Efficiency Treatment Program - Case Study for Low-Income Detached Houses Energy Efficiency Treatment Program (저소득층 에너지효율개선사업에 따른 난방에너지 절감 효과 및 경제성 분석 - 저소득층 단독주택 단열개선을 중심으로 -)

  • Kim, Jeong-Gook;Lee, Junghun;Jang, Cheolyong;Song, Doosam;Yoo, Seunghwan;Kim, Jonghun
    • KIEAE Journal
    • /
    • v.16 no.5
    • /
    • pp.39-45
    • /
    • 2016
  • Purpose: The purpose of this study is to analyze the energy saving and cost benefit analysis of the Low-income Energy Efficiency Treatment Program supported by KOREF(Korea Energy Foundation). This program was launched in 2007 and performs building energy retrofit for the low-income and energy poverty houses. Method: Energy simulation and cost benefit analysis were accomplished for the low-income detached houses. The structure of detached house was a lot og block structure, wood frame (single glass) and concrete roof. Baseline model of the low-income detached houses was proposed. Result: Annual heating energy consumptions were decreased by about 3.2% with the window system replacement(Case 1), 9.3% with reinforcement of insulation(Case2), and 12.5% with both(Case 3) compared to those of baseline model. The construction cost will be recouped within 5 years for the Case 1, 3 years for the Case 2, and 3 years for the Case 3. Case 3 was the most cost beneficient construction method in the analyzed cases in this study.

Accuracy Analysis of 2-D Direction Finding Based on Phase Comparison (위상비교 방식을 이용한 2차원 방향탐지 정확도 분석)

  • Chae, Myoung-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.8
    • /
    • pp.653-660
    • /
    • 2017
  • In this paper, the author analyzes direction finding accuracy based on phase comparisons to estimate elevation and azimuth angles of arrival signals. This paper considers the uniform array configurations using four and three elements. In that direction finding structures, I present the analytic expressions for estimated elevation and azimuth angles and then analyze the direction finding errors. And one presents the design guideline of direction finding system in comparison with aspects of accuracy, structure, the number of channels in that structures. The analysis result is similar with simulation one and has difference within $1.2^{\circ}RMS$. From the proposed analysis results, one knows that when SNR is 20 dB and the baseline is half of wavelength, the estimated elevation accuracy of the uniform array using four elements is 1.15 times better than the one of the uniform array using three elements and the estimated azimuth accuracy is same each other. In addition, one knows coning error is eliminated in 2-D direction finding structure.

Influence of implant-abutment connection structure on peri-implant bone level in a second molar: A 1-year randomized controlled trial

  • Kim, Jin-Cheol;Lee, Jungwon;Kim, Sungtae;Koo, Ki-Tae;Kim, Hae-Young;Yeo, In-Sung Luke
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.3
    • /
    • pp.147-154
    • /
    • 2019
  • PURPOSE. This study aimed to evaluate the effect of two different implant-abutment connection structures with identical implant design on peri-implant bone level. MATERIALS AND METHODS. This clinical study was a patient-blind randomized controlled trial following the CONSORT 2010 checklists. This trial was conducted in 24 patients recruited between March 2013 and July 2015. Implants with internal friction connection were compared to those with external hex connection. One implant for each patient was installed, replacing the second molar. Implant-supported crowns were delivered at four months after implant insertion. Standardized periapical radiographs were taken at prosthesis delivery (baseline), and one year after delivery. On the radiographs, distance from implant shoulder to first bone-to-implant contact (DIB) and peri-implant area were measured, which were the primary and secondary outcome, respectively. RESULTS. Eleven external and eleven internal implants were analyzed. Mean changes of DIB from baseline to 1-year postloading were 0.59 (0.95) mm for the external and 0.01 (0.68) mm for the internal connection. Although no significant differences were found between the two groups, medium effect size was found in DIB between the connections (Cohen's d = 0.67). CONCLUSION. Considering the effect size in DIB, this study suggested the possibility of the internal friction connection structure for more effective preservation of marginal bone.

Single Shot Detector for Detecting Clickable Object in Mobile Device Screen (모바일 디바이스 화면의 클릭 가능한 객체 탐지를 위한 싱글 샷 디텍터)

  • Jo, Min-Seok;Chun, Hye-won;Han, Seong-Soo;Jeong, Chang-Sung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.1
    • /
    • pp.29-34
    • /
    • 2022
  • We propose a novel network architecture and build dataset for recognizing clickable objects on mobile device screens. The data was collected based on clickable objects on the mobile device screen that have numerous resolution, and a total of 24,937 annotation data were subdivided into seven categories: text, edit text, image, button, region, status bar, and navigation bar. We use the Deconvolution Single Shot Detector as a baseline, the backbone network with Squeeze-and-Excitation blocks, the Single Shot Detector layer structure to derive inference results and the Feature pyramid networks structure. Also we efficiently extract features by changing the input resolution of the existing 1:1 ratio of the network to a 1:2 ratio similar to the mobile device screen. As a result of experimenting with the dataset we have built, the mean average precision was improved by up to 101% compared to baseline.

Structural damage localization using spatial wavelet packet signature

  • Chang, C.C.;Sun, Z.
    • Smart Structures and Systems
    • /
    • v.1 no.1
    • /
    • pp.29-46
    • /
    • 2005
  • In this study, a wavelet packet based method is proposed for identifying damage occurrence and damage location for beam-like structures. This method assumes that the displacement or the acceleration response time histories at various locations along a beam-like structure both before and after damage are available for damage assessment. These responses are processed through a proper level of wavelet packet decomposition. The wavelet packet signature (WPS) that consists of wavelet packet component signal energies is calculated. The change of the WPS curvature between the baseline state and the current state is then used to identify the locations of possible damage in the structure. Two numerical studies, one on a 15-storey shear-beam building frame and another on a simply-supported steel beam, and an experimental study on a simply-supported reinforced concrete beam are performed to validate the proposed method. Results show the WPS curvature change can be used to locate both single and sparsely-distributed multiple damages that exist in the structure. Also the accuracy of assessment does not seem to be affected by the presence of 20-15dB measurement noise. One advantage of the proposed method is that it does not require any mathematical model for the structure being monitored and hence can potentially be used for practical application.

Nonlinear spectral design analysis of a structure for hybrid self-centring device enabled structures

  • Golzar, Farzin G.;Rodgers, Geoffrey W.;Chase, J. Geoffrey
    • Structural Engineering and Mechanics
    • /
    • v.61 no.6
    • /
    • pp.701-709
    • /
    • 2017
  • Seismic dissipation devices can play a crucial role in mitigating earthquake damages, loss of life and post-event repair and downtime costs. This research investigates the use of ring springs with high-force-to-volume (HF2V) dissipaters to create damage-free, recentring connections and structures. HF2V devices are passive rate-dependent extrusion-based devices with high energy absorption characteristics. Ring springs are passive energy dissipation devices with high self-centring capability to reduce the residual displacements. Dynamic behaviour of a system with nonlinear structural stiffness and supplemental hybrid damping via HF2V devices and ring spring dampers is used to investigate the design space and potential. HF2V devices are modelled with design forces equal to 5% and 10% of seismic weight and ring springs are modelled with loading stiffness values of 20% and 40% of initial structural stiffness and respective unloading stiffness of 7% and 14% of structural stiffness (equivalent to 35% of their loading stiffness). Using a suite of 20 design level earthquake ground motions, nonlinear response spectra for 8 different configurations are generated. Results show up to 50% reduction in peak displacements and greater than 80% reduction in residual displacements of augmented structure compared to the baseline structure. These gains come at a cost of a significant rise in the base shear values up to 200% mainly as a result of the force contributed by the supplemental devices.