• 제목/요약/키워드: Baseflow separation method

검색결과 22건 처리시간 0.032초

NRCS-CN방법과 기저유출 분리법을 이용한 지하수함양률 산정 (Estiamtion of Groundwater Recharge Rate Using the NRCS-CN and the Baseflow Separation Methods)

  • 배상근;김용호
    • 한국환경과학회지
    • /
    • 제15권3호
    • /
    • pp.253-260
    • /
    • 2006
  • Groundwater recharge from precipitation is affected by the infiltration from ground surface and the movement of soil water. Groundwater recharge is directly related to the groundwater amount and flow in aquifers, and baseflow to rivers. Determining groundwater recharge rate for a given watershed is a prerequisite to estimate sustainable groundwater resources. The estimation of groundwater recharge rate were carried out for three subwatersheds in the Wicheon watershed and two subwatersheds in the Pyungchang River basin and for the period 1990-2000, using the NRCS-CN method and the baseflow separation method. The recharge rate estimates were compared to each other. The result of estimation by the NRCS-CN method shows the average annual recharge rate 15.4-17.0% in the Wicheon watershed and 26.4-26.8% in the Pyungchang River basin. The average annual recharge rates calculated by the baseflow separation method ranged 15.1-21.1% in the W icheon watershed, and 25.2-33.4% in the Pyungchang River basin. The average annual recharge rates calculated by the NRCS-CN method is less variable than the baseflow separation method. However, the average annual recharge rates obtained from the two methods are not very different, except NO. 6 subwatershed in Pyungchang River basin.

계절별 기후요건과 유황을 고려한 주지하수감수곡선에 대한 연구 (Research on Master Recession Curve (MRC) Considering Seasonality and Flow Condition)

  • 양동석;이서로;금동혁;임경재
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.317-317
    • /
    • 2018
  • Baseflow which is one of the unmeasurable components of streamflow and slowly flows through underground is important for water resource management. Despite various separation methods from researches preceded, it is difficult to find a significant separation method for baseflow separation. This study applied the MRC method and developed the improved approach to separate baseflow from total streamflow hydrograph. Previous researchers utilized the whole streamflow data of study period at once to derive synthetic MRCs causing unreliable results. This study has been proceeded with total nine areas with gauging stations. Each three areas are selected from 3 domestic major watersheds. Tool for drawing MRC had been used to draw MRCs of each area. First, synthetic MRC for whole period and two other MRCs were drawn following two different criteria. Two criteria were set by different conditions, one is flow condition and the other is seasonality. The whole streamflow was classified according to seasonality and flow conditions, and MRCs had been drawn with a specialized program. The MRCs for flow conditions had low R2 and similar trend to recession segments. On the other hand, the seasonal MRCs were eligible for the baseflow separation that properly reflects the seasonal variability of baseflow. Comparing two methods of assuming MRC for baseflow separation, seasonal MRC was more effective for relieving overestimating tendency of synthetic MRC. Flow condition MRCs had large distribution of the flow and this means accurate MRC could not be found. Baseflow separation using seasonal MRC is showing more reliability than the other one however, if certain technique added up to the flow condition MRC method to stabilize distribution of the streamflow, the flow conditions method could secure reliability as much as seasonal MRC method.

  • PDF

Comparative Analysis of Baseflow Separation using Conventional and Deep Learning Techniques

  • Yusuff, Kareem Kola;Shiksa, Bastola;Park, Kidoo;Jung, Younghun
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.149-149
    • /
    • 2022
  • Accurate quantitative evaluation of baseflow contribution to streamflow is imperative to address seasonal drought vulnerability, flood occurrence and groundwater management concerns for efficient and sustainable water resources management in watersheds. Several baseflow separation algorithms using recursive filters, graphical method and tracer or chemical balance have been developed but resulting baseflow outputs always show wide variations, thereby making it hard to determine best separation technique. Therefore, the current global shift towards implementation of artificial intelligence (AI) in water resources is employed to compare the performance of deep learning models with conventional hydrograph separation techniques to quantify baseflow contribution to streamflow of Piney River watershed, Tennessee from 2001-2021. Streamflow values are obtained from the USGS station 03602500 and modeled to generate values of Baseflow Index (BI) using Web-based Hydrograph Analysis (WHAT) model. Annual and seasonal baseflow outputs from the traditional separation techniques are compared with results of Long Short Term Memory (LSTM) and simple Gated Recurrent Unit (GRU) models. The GRU model gave optimal BFI values during the four seasons with average NSE = 0.98, KGE = 0.97, r = 0.89 and future baseflow volumes are predicted. AI offers easier and more accurate approach to groundwater management and surface runoff modeling to create effective water policy frameworks for disaster management.

  • PDF

대청댐유역의 기저유출분리를 통한 기저유량 산정에 관한 연구 (A Study on the Estimation of Base Flow Using Base Flow Separation in the Daichung Dam Basin)

  • 김경수;조기태
    • 대한지하수환경학회지
    • /
    • 제7권1호
    • /
    • pp.15-19
    • /
    • 2000
  • 본 연구는 하천유량 수문곡선의 분리를 통한 기저유량 산정에 관한 것이다. 수문곡선을 분리하기 위하여 Institute of Hydrology(1980)에서 제안한 표준방법(Standard Method)을 이용하였다. 이를 위하여 대상유역의 유역특성치와 기저유출관계를 이용하여 모형의 매개변수를 산정하였으며, 그 결과를 토대로 수문곡선을 분리하여 기저유량을 산정 하였다. 기저유량 산정결과 기저 유출율은 20.0%∼39.4%로 나타났으며, 유역면적이 비교적 큰 유역에서는 기저 유출율이 다소 높게 나타났고, 상대적으로 유역면적이 적은 지역에서는 기저 유출율이 적게 나타났다. 그리고 연 강우량과 기저 유출율의 관계를 분석한 결과 연강우량과 기저 유출율의 상관성은 거의 나타나지 않았다.

  • PDF

다양한 기저유출 분리 방법을 이용한 4대강 수계의 시간대별 (연·계절·월) 기저유출 기여도 분석 (Analysis of Baseflow Contribution based on Time-scales Using Various Baseflow Separation Methods)

  • 이승찬;김희연;김효정;한정호;김성준;김종건;임경재
    • 한국농공학회논문집
    • /
    • 제59권2호
    • /
    • pp.1-11
    • /
    • 2017
  • The analysis of baseflow contribution is very significant in Korea because most rivers have high variability of streamflow due to the monsoon climate. Recently, the importance of such analysis is being more evident especially in terms of river management because of the changing pattern of rainfall and runoff resulted from climate change. Various baseflow separation methods have been developed to separate baseflow from streamflow. However, it is very difficult to identify which method is the most accurate way due to the lack of measured baseflow data. Moreover, it is inappropriate to analyze the annual baseflow contribution for Korean rivers because rainfall patterns varies significantly with the seasons. Thus, this study compared the baseflow contributions at various time-scales (annual, seasonal and monthly) for the 4 major river basins through BFI (baseflow index) and suggested baseflow contribution of each basin by the BFI ranges searched from different baseflow separation methods (e.g., BFLOW, HYSEP, PART, WHAT). Based on the comparison of baseflow contributions at the three time scales, this study showed that the baseflow contributions from the monthly and seasonal analysis are more reasonable than that from the annual analysis. Furthermore, this study proposes that defining BFI with its range is more proper than a specific value for a watershed, considering the difference of BFIs between various baseflow separation methods.

Uncertainty Evaluation of Baseflow Separation Filter methods: A Case Study of the Urmia Lake Basin in Iran

  • Nezhad, Somayeh Moghimi;Jun, Changhyun;Parisouj, Peiman;Narimani, Roya
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.135-135
    • /
    • 2022
  • In this study, we evaluated uncertainties in baseflow separation filter methods focusing on changes in recession constant (𝛼) values, which include Lynie & Holick (LH) algorithm, Chapman algorithm, Eckhardt filter, and EWMA filter. Here, we analyzed daily streamflow data at 14 stations in the Urmia Lake basin, Iran, from 2015 to 2019. The 𝛼 values were computed using three different approaches from calculating the slope of a recession curve by averaging the flow over all seasons, a correlation method, and a mean value of the ratio of Qt+1 to Qt. In addition to the 𝛼 values, the BFImax (maximum value of the baseflow index (BFI)) was determined for the Eckhardt filter through the backward filter method. As results, it indicates that the estimated baseflow is dependent upon the selection of filter methods, their parameters, and catchment characteristics at different stations. In particular, the EWMA filter showed the least changes in estimating the baseflow value by changing the 𝛼 value, and the Eckhardt filter and LH algorithm showed the highest sensitivity to this parameter at different stations.

  • PDF

수문곡선의 기저유출분리 방법에 대한 고찰 (A Comparative Study on the Storm Hydrograph Separation Methods for Baseflow through Field Applications)

  • 조성현;문상호
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제27권1호
    • /
    • pp.50-59
    • /
    • 2022
  • There are several methods for separating the baseflow from the hydrograph, and graphical methods (GM) have mostly been used. GMs are those that separate the baseflow from the direct flow simply by connecting rising point with inflection point or points related to some duration from a hydrograph. Environmental tracer method (ETM) is another tool researched and developed under several conditions to estimate the groundwater recharge. The goal of this study is to separate the baseflow component from a storm hydrograph by applying various GMs and ETM, and to compare their results. The baseflow component estimated by ETM was different from the results by GMs in terms of their shapes of fluctuation and flow rates. Another important feature is that the form of the baseflow to which ETM is applied is similar to that of a storm hydrograph. This similarity is presumed to be due to the selection of tracer that respond quickly to rainfall.

계절·유황특성을 고려한 주지하수감수곡선을 활용한 기저유출분리 평가 (Estimation of Baseflow based on Master Recession Curves (MRCs) Considering Seasonality and Flow Condition)

  • 양동석;이서로;이관재;김종건;임경재;김기성
    • 한국습지학회지
    • /
    • 제21권1호
    • /
    • pp.34-42
    • /
    • 2019
  • 기저유출은 지표하를 통하여 느리게 하천으로 유입되며 하천 관리에 있어서 중요한 요소이다. 기저유출의 정확한 파악을 위하여 본 연구에서 활용된 주지하수감수곡선(MRC) 방법을 포함한 다양한 방법들이 연구되었지만, 측정 불가능한 기저유출의 특성상 정량적인 평가는 어렵다. MRC를 활용한 선행 연구들은 연구 기간 내에 존재하는 모든 감수부를 활용하였으며 이는 국내환경에서 부정확한 MRC를 유도하였다. 본 연구는 기존에 행해지던 주지하수감수곡선(MRC) 분리방법을 국내 특성을 고려하여 계절과 유황특성으로 구분하고 기저유출 분리에 적용하였다. 연구대상지역은 한강, 낙동강 그리고 금강수계에서 각 3곳의 유량관측점을 선정하여 총 9 곳이며, 수리구조물의 영향이 없도록 상류지역에서 선정하였다. MRC를 도출하기 위하여 기존에 제작된 프로그램을 사용하였으며, 관측점 별로 총 세 개의 MRC를 도출하였다. 전체 기간에 대한 MRC와 본 연구에서 구분한 계절과 유황을 고려한 MRC 두 가지이다. 유황을 고려한 MRC는 낮은 R2값과 감수곡선과 비슷한 추세의 MRC를 도출하였다. 계절을 고려한 MRC의 경우 기저유출분리에 적합한 양상을 보여주었으며 계절별 특성이 뚜렷하게 반영된 MRC를 도출하였다. 두 가지 방법에 따라 도출된 MRC를 비교하였을 때, 계절을 고려한 MRC는 기존의 MRC를 사용한 분리과정에서 과산정 되었던 기저유출량이 감소되고 안정되게 분리되었다. 유황을 고려한 MRC의 경우 그래프 상의 감수부가 다양한 감수양상을 가지고 있었으며 이에 따라 낮은 R2값의 MRC가 도출되었다. 따라서 기저유출을 분리하기 위해선 계절을 고려한 MRC가 더 높은 정확성을 보일 것으로 판단되며, 유황을 고려한 MRC의 경우, 추가적인 보정 작업을 통해서 신뢰도 높은 MRC의 도출이 필요할 것으로 판단된다.

소유역의 강수에 의한 지하수 함양량 산정 (Estimation of Groundwater Recharge from Precipitation in a Small Basin)

  • 배상근;이승현
    • 한국수자원학회논문집
    • /
    • 제37권5호
    • /
    • pp.397-406
    • /
    • 2004
  • 어떤 특정 지역의 지하수 개발량을 적적히 파악하기 위해서는 지하수함양량의 산정이 필요하다. 경상북도에 위치한 위천 유역내의 소유역에 대하여 지하수 함양량을 산정하였다. 기저유출분리법과 SCS-CN방법을 이용하여 갈수년과 풍수년이 존재하는 1992년∼1997년간의 년 평균 지하수 함양량을 추정하였다. 기저유출분리법을 이용하여 추정한 결과, 연평균 지하수 함양률이 11.9%∼18.7%로 변화하였으며 계산기간 중의 년 평균 강수에 의한 지하수 함양량은 141.6mm로 지하수함양률은 14.5%이었다. SCS-CN방법을 이용하여 추정한 결과, 연평균 지하수 함양균이 7.9%∼20.9%로 변화하였으며 계산기간 중의 년 평균 강수에 의한 피하수 함양량은 147.4mm 로 지하수 함양률은 15.1%이었다. 두 방법으로 산정한 갈수년과 풍수년이 존재하는 장기간 동안의 년 평균 강수에 의한 지하수 함양량은 지하수 개발에 유용하게 사용할 수 있음을 나타낸다.

농업소유역에서 직접유출과 기저유출에 의한 오염부하특성 (Pollutant Load Characteristics by Direct Runoff and Baseflow from Small Scale Agricultural Watershed)

  • 신용철;류창원;최예환;임경재;최중대
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2005년도 학술발표논문집
    • /
    • pp.580-585
    • /
    • 2005
  • Natural environment of Weolgok-ri watershed has been well preserved as a traditional agricultural watershed. A year record of streamflow, $NO_3-N$, T-N and T-P concentrations data(Apr, 2004-Mar. 2005) was examined to estimate annual and seasonal patterns of pollutnat loads in streamflow and baseflow from the agriculture watershed. To estimate pollutant loads from baseflow, baseflow component from total stream flow was seperated using digital filter method in the Web-based Hydrograph Analysis Tool system. Loads of $NO_3-N$, T-N and T-P from streamflow and baseflow were evaluated to investigate pollutant loads contribution by baseflow. The $NO_3-N$, T-N, and T-P loads from streamflow were 13.85 kg/ha, 45.92 kg/ha and 1.887 kg/ha, respectively. $NO_3-N$, T-N and T-P loads from baseflow were 7.43 kg/ha, 24.70 kg/ha, 0.582 kg/ha, respectively. It was found that $NO_3-N$ and T-N loads were contributed by the baseflow(53% and 53% of Total-loads) than the direct runoff(47% and 47% of Total loads). However, only 30% of total T-P was contributed by the baseflow. It is recommended that one needs to assess pollutant load contribution by the baseflow to identify appropriate control strategies for effective watershed management.

  • PDF