• 제목/요약/키워드: Baseflow

Search Result 171, Processing Time 0.023 seconds

Quantifying Contribution of Direct Runoff and Baseflow to Rivers in Han River System, South Korea (한강수계의 하천에 대한 직접유출과 기저유출의 기여도 정량화)

  • Hong, Jiyeong;Lim, Kyoung Jae;Shin, Yongchul;Jung, Younghun
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.4
    • /
    • pp.309-319
    • /
    • 2015
  • River characteristics in South Korea has been affected by seasonal climatic variability due to climate change and by remarkable land cover change due to rapid economic growth. In this regard, the roles of river management is getting more important to eco-system and human community in watersheds of South Korea. Understanding river characteristics including direct runoff and baseflow, the first step of river management, can give a significant contribution to sustainable river environment. Therefore, the objective of this study is to quantify the contributions of the direct runoff and baseflow to river streamflow. For this, we used the BFLOW and WHAT programs to conduct baseflow separation for 71 streamflow gauge stations in Han River system, South Korea. The results showed that baseflow index for 71 stations ranges from 0.42 to 0.78. Also, gauge stations which have baseflow index more than 0.5 occupied 76% of a total stations. However, baseflow index can be overestimated due to human impacts such as discharge from dams, reservoirs, and lakes. This study will be used as fundamental information to understand river characteristics in river management at the national level.

Baseflow Comparison using the WHAT system and Flow Rate Measurements in the Dry and Rainy Seasons (건기 및 우기 때의 WHAT system과 유량측정에 의한 기저유출량 비교)

  • Nam, Koung-Hoon;Kim, Gyoo-Bum;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.23 no.2
    • /
    • pp.117-125
    • /
    • 2013
  • Flooding of riparian groundwater caused by changes in rainfall patterns has become a critical problem in areas of agricultural and arable land. Therefore, quantitative analysis of direct runoff and baseflow, which are the most important factors in determining the flow rate of a river, is required to clarify the flooding mechanisms of riparian groundwater. In this study, baseflow obtained using the WHAT system of hydrograph analysis based on Web GIS, and baseflow measured from direct runoff were quantitatively analyzed. Baseflow during the rainy season was 0.489 $m^3/s$ on 17 July 2012, 0.260 $m^3/s$ on 18 July 2012, and 0.279 $m^3/s$ on 19 July 2012, while that during the dry season was 0.006 $m^3/s$ on 6 March 2013 and 0.009 $m^3/s$ on 30 March 2013. The results show that an increase in baseflow occurred during the rainy season in the alluvial area of a riparian zone, and that the measurement error was less during the dry season than during the rainy season.

Analysis of Dam Inflow using Baseflow Separation (기저유출분리를 통한 댐 유입량 특성분석)

  • Seong, Yeon-Jeong;Bastola, Shiksha;Lee, Sanghyup;Kim, Byoungwoo;Jung, Younghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.171-171
    • /
    • 2018
  • 댐 유입량의 구성을 이해하는 것은 직접유출과 기저유출의 특성에 따라 수자원확보, 물 공급, 관개용수, 수력발전, 생태계 서식지, 친수활동 등 계절별 댐 운영을 효율적으로 수행하는데 기여할 수 있다. 또한, 댐은 대부분 유역 상류에 위치해 있어 댐 유입유량에 있어 다른 수리구조물에 의한 영향이 상대적으로 작기 때문에 앞에서 제시한 인위적 영향을 제외한 기저유출분리를 수행 할 수 있다. 이와 관련하여 본 연구의 목적은 1)댐 유입량에 대한 연별, 월별 기저유출을 분석하고; 2) 유역 상 하류에 위치한 댐의 유입량에 대하여 기저유출 기여도를 비교하는 것이다. 두 개의 연계 댐에 대하여 인위적 영향이 적은 상류에 위치한 댐이 하류에 위치한 댐보다 Baseflow Index가 더 작은 결과를 보여주었다. 상류 수자원시설부터 인위적 방류는 하류의 댐 유입량의 Baseflow Index를 과다산정의 원인이 될 수 있다는 것으로 나타났다. 본 연구의 결과는 댐 유입량의 특성을 월별 연별로 분석함으로써 댐의 역할과 기능을 확대하고 효율적 상 하류 댐 연계운영에 기여할 것으로 기대한다.

  • PDF

A Study on the Analysis of Non-point Source Runoff Characteristics and Verification of Unit Pollutant Load Considering Baseflow Runoff (기저유출을 고려한 비점오염 유출특성 분석과 원단위 검증에 관한 연구)

  • Park, Jaebeom;Kal, Byungseok;Lee, Chulgu;Hong, Seonhaw;Choi, Moojin
    • Journal of Wetlands Research
    • /
    • v.19 no.3
    • /
    • pp.279-286
    • /
    • 2017
  • In this study, the characteristics of non-point source pollution runoff and the possibility of using new unit load were investigated by using pollutant load based on monitoring data considering baseflow. For this purpose, the components of hydrograph were separated by using digital filter method and the numerical integration method was applied to calculate the non-point source pollutant load for nine rainfall events in Juwon river in the Geum River basin. As a result of this study, the mean contribution rate of non-point pollutant was 31.34% for BOD, 58.94% for T-N, and 50.42% for T-P and BOD was more influenced by baseflow pollutant. Also, it was analyzed the pollutant load using the new unit load is closer to the observation load than the old unit load. This result implies that it is necessary to manage not only pollutant load due to direct runoff but also pollutant load due to baseflow runoff for efficient water quality management of the watershed.

A Proposal of Baseflow using Discharge Measurement Method in the Streams of Island (도서지역 하천의 기저유출량 산정을 위한 유량측정방법 제안)

  • Lee, Jun-Ho;Yang, Sung-Kee;Jung, Woo-Yul
    • Journal of Environmental Science International
    • /
    • v.23 no.4
    • /
    • pp.561-569
    • /
    • 2014
  • The water resources system of Jeju-do Island entirely depends on groundwater. This study is making a precision observation of baseflow, surface water, water shortage that might be vulnerable to climate change and drought in future. The field observation of baseflow discharges in Akgeuncheon stream has regularly been made with ADCP and ADC and Flowmate every two weeks for twenty-two (22) months (July 8, 2011 to April 27, 2013). This paper represent the results of calculating discharge of a number of hydraulic structures (broad-crested weirs) with comparing and has been calculated more accurate discharges with suitability of different observation methods. The average discharge has been observed 0.851 $m^3/s$, whereas the average ADC and Flowmate is 0.709 $m^3/s$. Meanwhile, stream discharge has been calculated 0.709 $m^3/s$ through the broad-crested weir equation. The discharge has calculated with the weir equation greatly changed according to even a small change in the water level. However, it showed a similar trend to one of the observed discharge. Although, in past there were generating errors caused by observers' strides, vertical and horizontal flow velocity distribution when the average flow velocity had been measured, non-prismatic flow, turbulent flow and others in ADC. This study comes up with the weir equation is more suitable for the characteristics of Jeju-do could be presented through an observations of baseflow discharge.

Needs for the Management of Baseflow in the Vicinity of Burial Sites (매몰지주변 기저유출 관리 필요성)

  • Kim, Yong-joon;Jung, Woog-hyuk;Kim, Geon-ha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.3
    • /
    • pp.219-228
    • /
    • 2017
  • Burial sites are constructed for the purpose of controlling air-born livestock diseases such as avian influenza and foot-and-mouth outbreak. As most of the burial sites are located in the agricultural land use, public concerns are mounting about soil and groundwater contamination. During precipitation events, contaminated baseflows are released from the burial sites into surface waters. Baseflow are therefore required to be managed properly, by monitoring and even by remediation means. We propose each burial sites should be regarded as a point source possibly degrade groundwater, thus be managed in watershed scale for the purpose of surface water quality conservation.

Estimation of Baseflow based on Master Recession Curves (MRCs) Considering Seasonality and Flow Condition (계절·유황특성을 고려한 주지하수감수곡선을 활용한 기저유출분리 평가)

  • Yang, Dongseok;Lee, Seoro;Lee, Gwanjae;Kim, Jonggun;Lim, Kyoung Jae;Kim, Ki-Sung
    • Journal of Wetlands Research
    • /
    • v.21 no.1
    • /
    • pp.34-42
    • /
    • 2019
  • Baseflow which is one of the unmeasurable components of streamflow and slowly flows through underground is important for water resource management. Despite various separation methods from researches preceded, it is difficult to find a significant separation method for baseflow separation. This study applied the MRC method and developed the improved approach to separate baseflow from total streamflow hydrograph. Previous researchers utilized the whole streamflow data of study period at once to derive synthetic MRCs causing unreliable results. This study has been proceeded with total nine areas with gauging stations. Each three areas are selected from 3 domestic major watersheds. Tool for drawing MRC had been used to draw MRCs of each area. First, synthetic MRC for whole period and two other MRCs were drawn following two different criteria. Two criteria were set by different conditions, one is flow condition and the other is seasonality. The whole streamflow was classified according to seasonality and flow conditions, and MRCs had been drawn with a specialized program. The MRCs for flow conditions had low R2 and similar trend to recession segments. On the other hand, the seasonal MRCs were eligible for the baseflow separation that properly reflects the seasonal variability of baseflow. Comparing two methods of assuming MRC for baseflow separation, seasonal MRC was more effective for relieving overestimating tendency of synthetic MRC. Flow condition MRCs had a large distribution of the flow and this means accurate MRC could not be found. Baseflow separation using seasonal MRC is showing more reliability than the other one, however if certain technique added up to the flow condition MRC method to stabilize distribution of the streamflow, the flow conditions method could secure reliability as much as seasonal MRC method.

Assessment of Future Climate Change Impact on Groundwater recharge, Baseflow and Sediment in Steep Sloping Watershed (미래 기후변화에 따른 급경사지 유역에서의 지하수 함양, 기저유출 및 토양유실 평가)

  • Lee, Ji Min;Jung, Younghun;Park, Younshik;Kang, Hyunwoo;Lim, Kyoung Jae;Kim, Hungsoo
    • Journal of Wetlands Research
    • /
    • v.16 no.2
    • /
    • pp.173-185
    • /
    • 2014
  • Climate change has caused detrimental phenomena such as heavy rainfall which could aggravate soil erosion. Accordingly, it is needed to evaluate the groundwater recharge, baseflow, and soil erosion for the efficient management of water resources and quality. In this study, future climate change scenarios were applied to the H aean-myeon watershed which is a steep sloping watershed in South Korea to analyze groundwater recharge, baseflow, sediment. Also, the variation of groundwater recharge, baseflow, sediment was analyzed according to the change of slope (5 %). Simulated periods were divided into three terms (2013 ~ 2040 years, 2041 ~ 2070 years, 2071 ~ 2100 years). As a result of this study, average groundwater recharge and baseflow increased by 50 %, 42 %, and sediment decreased by 72 %, respectively. In these regards, the suggested method will positively contribute to hydro-ecosystem and reduction of muddy water at a steep sloping watershed.

SWAT Direct Runoff and Baseflow Evaluation using Web-based Flow Clustering EI Estimation System (웹기반의 유량 군집화 EI 평가시스템을 이용한 SWAT 직접유출과 기저유출 평가)

  • Jang, Won Seok;Moon, Jong Pil;Kim, Nam Won;Yoo, Dong Sun;Kum, Dong Hyuk;Kim, Ik Jae;Mun, Yuri;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.61-72
    • /
    • 2011
  • In order to assess hydrologic and nonpoint source pollutant behaviors in a watershed with Soil and Water Assessment Tool (SWAT) model, the accuracy evaluation of SWAT model should be conducted prior to the application of it to a watershed. When calibrating and validating hydrological components of SWAT model, the Nash-Sutcliffe efficiency coefficient (EI) has been widely used. However, the EI value has been known as it is affected sensitively by big numbers among the range of numbers. In this study, a Web-based flow clustering EI estimation system using K-means clustering algorithm was developed and used for SWAT hydrology evaluation. Even though the EI of total streamflow was high, the EI values of hydrologic components (i.e., direct runoff and baseflow) were not high. Also when the EI values of flow group I and II (i.e., low and high value group) clustered from direct runoff and baseflow were computed, respectively, the EI values of them were much lower with negative EI values for some flow group comparison. The SWAT auto-calibration tool estimated values also showed negative EI values for most flow group I and II of direct runoff and baseflow although EI value of total streamflow was high. The result obtained in this study indicates that the SWAT hydrology component should be calibrated until all four positive EI values for each flow group of direct runoff and baseflow are obtained for better accuracy both in direct runoff and baseflow.

Investigating the Impact of Best Management Practices on Nonpoint Source Pollution from Agricultural Lands

  • ;Saied Mostaghimi
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.E
    • /
    • pp.1-19
    • /
    • 1990
  • Abstract Over the last several decades, crop production in the United States increased largely due to the extensive use of animal waste and fertilizers as plant nutrient supplements, and pesticides for crops pests and weed control. Without the application of animal waste best management, the use of animal waste can result in nonpoint source pollution from agricultural land area. In order to increase nutrient levels and decrease contamination from agricultural lands, nonpoint source pollution is responsible for water quality degradation. Nonpoint source pollutants such as animal waste, ferilizers, and pesticides are transported primarily through runoff from agricultural areas. Nutrients, primarily nitrogen and phosphorus, can be a major water quality problem because they cause eutrophic algae growth. In 1985, it was presented that Watershed/Water Quality Monitoring for Evaluation BMP Effectiveness was implemented for Nomini Creek Watershed, located in Westmoreland County, Virginia. The watershed is predominantly agricultural and has an aerial extent of 1505 ha of land, with 43% under cropland, 54% under woodland, and 3% as homestead and roads. Rainfall data was collected at the watershed from raingages located at sites PNI through PN 7. Streams at stations QN I and QN2 were being measured with V-notch weirs. Water levels at the stream was measured using an FW-l Belfort (Friez FWl). The water quality monitoring system was designed to provide comprehensive assessment of the quality of storm runoff and baseflow as influenced by changes in landuse, agronomic, and cultural practices ill the watershed. As this study was concerned with the Nomini Creek Watershed, the separation of storm runoff and baseflow measured at QNI and QN2 was given by the master depletion curve method, and the loadings of baseflow and storm runoff for TN (Total Nitrogen) and TP (Total Phosphorus) were analyzed from 1987 through 1989. The results were studied for the best management practices to reduce contamination and loss of nutrients, (e.g., total nitrogen and total phosphorus) by nonpoint source pollution from agricultural lands.

  • PDF