• Title/Summary/Keyword: Baseband processor

Search Result 34, Processing Time 0.02 seconds

Study on the Improvement of OFDM/64QAM Modem (OFDM/64QAM방식의 모뎀 설계)

  • Park, Jin-Soo
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.1
    • /
    • pp.158-162
    • /
    • 2012
  • In this paper, we propose a wireless modem, which used OFDM/64QAM method and the ISM band with 2.4GHz radio frequency. In this paper proposed the case of a modem, the main program to process the baseband processor, processing speed, operating voltage, and reliability should be ensured. So we have designed with Ralink's RT2870, witch was used for Wi-Fi solution. The RT2870 provides full support for wireless LAN standard, and supports various modulation formats, 2.4GHz and 5GHz bands, both of which support chip. In this paper, we also output the modulated signal transmitted wirelessly to the 2.4GHz band RF RT2850 chip processing was applied and using 40MHz band 2.422 ~ 2.462GHz wireless bands were designed to occupy. By applying bi-directional transmission between wireless transmitter and receiver, it can be effectively connected with any kinds of wireless LAN with 2.4GHz ISM band. Therefore it could economically be used as peripheral equipments for POS system or personal wireless device based on Android platform.

Implementation of Location Based Services Using Satellite DMB System (위성 DMB 시스템을 이용한 위치 기반 서비스 구현)

  • Kwon, Seong-Geun;Lee, Suk-Hwan;Kim, Kang-Wook;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.1
    • /
    • pp.32-39
    • /
    • 2012
  • In this paper, the implementation of location based services (LBS) using S-DMB (satellite-digital multimedia broadcasting) system was proposed. In S-DMB System, the frequency of transmitted signal is about 2 GHz which has a characteristics of strong straightness but weak diffraction so that there are many shade areas such as indoors and underground spaces. Therefore the signal transmitted from the satellite should be retransmitted by the earth repeaters called as gap filler. Because each gap filler has its own identification value, the gap filler ID introduces the area in which the gap filler was installed. Generally, the 51st data symbols of S-DMB pilot signal transmitted from the satellite are padded by dummy value and gap filler ID is embedded in this pilot symbol by the gap filler when S-DMB signals are retransmitted by gap fillers. So using gap filler ID of S-DMB system, LBS such as region registration, distance and time to destination, alarm of local area information could be implemented. In the experiment to prove the performance of the proposed LBS system using the gap filler ID of the S-DMB system, the firmware of S-DMB chip composing of RF and baseband parts was lightly modified so that application processor was able to manipulate the gap filler ID and the its related regional information.

Design of RF Front-end for High Precision GNSS Receiver (고정밀 위성항법 수신기용 RF 수신단 설계)

  • Chang, Dong-Pil;Yom, In-Bok;Lee, Sang-Uk
    • Journal of Satellite, Information and Communications
    • /
    • v.2 no.2
    • /
    • pp.64-68
    • /
    • 2007
  • This paper describes the development of RF front.end equipment of a wide band high precision satellite navigation receiver to be able to receive the currently available GPS navigation signal and the GALILEO navigation signal to be developed in Europe in the near future. The wide band satellite navigation receiver with high precision performance is composed of L - band antenna, RF/IF converters for multi - band navigation signals, and high performance baseband processor. The L - band satellite navigation antenna is able to be received the signals in the range from 1.1 GHz to 1.6 GHz and from the navigation satellite positioned near the horizon. The navigation signal of GALILEO navigation satellite consists of L1, E5, and E6 band with signal bandwidth more than 20 MHz which is wider than GPS signal. Due to the wide band navigation signal, the IF frequency and signal processing speed should be increased. The RF/IF converter has been designed with the single stage downconversion structure, and the IF frequency of 140 MHz has been derived from considering the maximum signal bandwidth and the sampling frequency of 112 MHz to be used in ADC circuit. The final output of RF/IF converter is a digital IF signal which is generated from signal processing of the AD converter from the IF signal. The developed RF front - end has the C/N0 performance over 40dB - Hz for the - 130dBm input signal power and includes the automatic gain control circuits to provide the dynamic range over 40dB.

  • PDF

Development and Field Test of the NEXTSat-2 Synthetic Aperture Radar (SAR) Antenna Onboard Vehicle (차세대소형위성 2호 영상 레이다 안테나 개발 및 차량 탑재 시험)

  • Shin, Goo-Hwan;Lee, Jung-Su;Jang, Tae Seong;Kim, Dong-Guk;Jung, Young-Bae
    • Journal of Space Technology and Applications
    • /
    • v.1 no.1
    • /
    • pp.33-40
    • /
    • 2021
  • Based on the requirements of a total weight of 42 kg or less, the NEXTSat-2 SAR (synthetic aperture radar) system was developed. As the NEXTSat-2 is a small-sized satellite, the SAR system was designed to account for about 40% of the dry mass of the payload relative to the total mass. Among the major components of the SAR system - which are an antenna, an RF transceiver, a baseband signal processor, and a power unit - a part with a particularly large dry mass is the antenna, the core of the SAR system. Whereas various selections are possible in consideration of gain and efficiency when designing the antenna, the micro-strip patch array antenna was adopted by reflecting the dry mass, power, and resolution required by the NEXTSat-2 project. In order to meet the mission requirement of the NEXTSat-2, the antenna was developed with a frequency of 9.65 GHz, a gain of 42.7 dBi, and a return loss of -15 dB. The performance of the antenna was verified by conducting a field test onboard the vehicle.