• Title/Summary/Keyword: Base-seismic isolation

Search Result 279, Processing Time 0.027 seconds

Considerations for the Generation of In-Structure Response Spectra in Seismically Isolated Structures (면진구조물 내 층응답스펙트럼 작성을 위한 고려사항)

  • Lee, Seung Jae;Kim, Jung Han
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.95-103
    • /
    • 2022
  • In order to evaluate the earthquake safety of equipment in structures, it is essential to analyze the In-Structure Response Spectrum (ISRS). The ISRS has a peak value at the frequency corresponding to the structural vibration mode, but the frequency and amplitude at the peak can vary because of many uncertain parameters. There are several seismic design criteria for ISRS peak-broadening for fixed base structures. However, there are no suggested criteria for constructing the design ISRS of seismically isolated structures. The ISRS of isolated structures may change due to the major uncertainty parameter of the isolator, which is the shear stiffness of the isolator and the several uncertainty parameters caused by the nonlinear behavior of isolators. This study evaluated the effects on the ISRS due to the initial stiffness of the bi-linear curve of isolators and the variation of effective stiffness by the input ground motion intensity and intense motion duration. Analyzing a simplified structural model for isolated base structure confirmed that the ISRS at the frequency of structural mode was amplified and shifted. It was found that the uncertainty of the initial stiffness of isolators significantly affects the shape of ISRS. The variation caused by the intensity and duration of input ground motions was also evaluated. These results suggested several considerations for generating ISRS for seismically isolated structures.

Investigations on seismic performance of nuclear power plants equipped with an optimal BIS-TMDI considering FSI effects

  • Shuaijun Zhang;Gangling Hou;Chengyu Yang;Zhihua Yue;Yuzhu Wang;Min He;Lele Sun;Xuesong Cai
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2595-2609
    • /
    • 2024
  • This paper introduces a base isolation system-tuned mass damper inerter (BIS-TMDI) hybrid system to the AP1000 nuclear power plant (NPP), which reduces seismic damage potential of the NPP structure. The effects of fluid-structure interaction (FSI) caused by the passive containment cooling system water storage tank (PCCWST) on NPP's seismic performance are investigated. The FSI of water tank theoretical model is considered based on the Housner's model, and a series of time history analyses are performed to prove the rationality of the proposed model. Three single-objective optimization strategies are employed to minimize the relative displacement variance and absolute acceleration variance of the upper structure, as well as the filtered energy index (FEI). Furthermore, a multi-objective optimization strategy considering all these three indexes is proposed to obtain optimal parameters of vibration control. The influence of vibration control strategies on the relative deformation and acceleration of the upper structure is explored with various water level ratios. The analytical results indicate that the proposed BIS-TMDI strategy has significantly reduced the NPP structure's seismic response. The effectiveness of the vibration control strategy is influenced by the water level ratio, emphasizing the significance of designing an appropriate water level ratio to reduce NPP structure's seismic response.

Rocking behavior of bridge piers with spread footings under cyclic loading and earthquake excitation

  • Hung, Hsiao-Hui;Liu, Kuang-Yen;Chang, Kuo-Chun
    • Earthquakes and Structures
    • /
    • v.7 no.6
    • /
    • pp.1001-1024
    • /
    • 2014
  • The size of spread footings was found to be unnecessarily large from some actual engineering practices constructed in Taiwan, due to the strict design provisions related to footing uplift. According to the earlier design code in Taiwan, the footing uplift involving separation of footing from subsoil was permitted to be only up to one-half of the foundation base area, as the applied moment reaches the value of plastic moment capacity of the column. The reason for this provision was that rocking of spread footings was not a favorable mechanism. However, recent research has indicated that rocking itself may not be detrimental to seismic performance and, in fact, may act as a form of seismic isolation mechanism. In order to clarify the effects of the relative strength between column and foundation on the rocking behavior of a column, six circular reinforced concrete (RC) columns were designed and constructed and a series of rocking experiments were performed. During the tests, columns rested on a rubber pad to allow rocking to take place. Experimental variables included the dimensions of the footings, the strength and ductility capacity of the columns and the intensity of the applied earthquake. Experimental data for the six circular RC columns subjected to quasi-static and pseudo-dynamic loading are presented. Results of each cyclic loading test are compared against the benchmark test with fixed-base conditions. By comparing the experimental responses of the specimens with different design details, a key parameter of rocking behavior related to footing size and column strength is identified. For a properly designed column with the parameter higher than 1, the beneficial effects of rocking in reducing ductility and the strength demand of columns is verified.

Dynamic Property Evaluation of Lead Rubber Bearing by Shear Loading (적층고무베어링의 동적 특성평가)

  • 이경진;김갑순;강태경;서용표;이종림
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.367-372
    • /
    • 2002
  • In these days, The base isolation system is often used to improve the seismic capacity of the structures instead of conventional techniques of strengthening the structural members. The purpose of this study is to evaluate dynamic properties and mechanical characteristics of the 10tonf-LRB(Lead-Rubber Bearing). Experimental studies were performed to obtain the hysteretic behavior, effective shear stiffness( $K_{eff}$), equivalent damping( $H_{eq}$ ), capacity of energy dissipation( $W_{D}$) of six 10tonf-LRB. Especially, in this study, the response of the LRB for high loading frequency(0.5Hz~3.0Hz) was estimated. The effective shear stiffness of the LRB decreases and the capacity of energy dissipation increases as the shear strain amplitude increases. But the shear behavior of the LRB is not affected sensitively by loading frequency.y.y.

  • PDF

Experimental Study on Viscous Fluid Damper for Seismic Base Isolation System (점성감쇠형 면진장치에 관한 실험적 연구)

  • 정민기;박진일;권형오;김두훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.590-595
    • /
    • 1998
  • This study was performed to obtain a numerical model for a viscous fluid damper from an experimental testing. The input signals for displacement were chosen as two type : a triangular and a sinusoidal forms. The performing test parameters were the area of the resistant plate and the oil film thickness of the viscous fluid and the temperature effect was neglected. The numerical model was established by assuming to behavior as an non-Newtonian fluid. The test results were summarized by the equation of F = 0.0308A(V/d)$^{0.51}$25/. Using the obtainal formula, the procedure to apply the viscous damper for a real structure design was introduced..

  • PDF

Design of Viscoelastic Dampers Using Effective Damping Ratio (유효감쇠비를 이용한 점탄성 감쇠기의 설계)

  • 최현훈;김진구
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.371-378
    • /
    • 2001
  • To enhance seismic performance of a structure ATC-40 and FEMA-273 propose technical strategies such as increasing strength, altering stiffness, and reducing demand by employing base isolation and energy dissipation devices. Specifically the energy dissipation devices directly increase the ability of the structure to dampen earthquake response. However nonlinear dynamic time history analysis of a structure with energy dissipation devices is complicated and time consuming. In this study a simple and straightforward procedure is developed using effective damping ratio to obtain the required amount of viscoelastic dampers in order to meet given performance objectives. Parametric study has been performed for the period of the structure, yield strength, and the stiffness after the first yield. According to the analysis results, earthquake demand and required damping ratio were reduced by installing viscoelastic dampers. The results also show that with the addition of the supplemental damping evaluted by the proposed method the performance of the model structures are well restrained within the target point.

  • PDF

Guidelines of Designing LRB for a Seismically Excited Cable-Stayed Bridge (지진 하중을 받는 사장교를 위한 납고무 받침의 설계 기준 제안)

  • 이성진;박규식;김운학;이인원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.326-333
    • /
    • 2003
  • Most long-span bridges such as a cable-stayed bridges have a number of long-period modes due to the flexibility, thus the design concept extending the natural period of structures using base isolation system may be difficult to use directly to these structures. But, the effectiveness of LRB for cable-stayed bridges is indicated in several papers. In this study, the guidelines of designing LRB for a seismically excited cable-stayed bridge using benchmark cable-stayed bridge are presented. The design properties of LRB are chosen that the design index(DI) is minimized or little changed for variation of properties. And the seismic performance of designed LRB is also investigated. The consequences show that the perforamnce of designed LRB is better than that of simply designed LRB for several history earthquakes. Moreover, the design properties of LRB are researched to several diffrent dominant frequency of earthquake. The results present that the plastic and elastic stiffness of LRB are affected by the dominant frequency of earthquake.

  • PDF

Application of Hybrid Structural System Using Coupled Vibration Control Structure and Seismic Isolated Structure in High-Rise Building

  • Nakajima, Shunsuke
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.3
    • /
    • pp.219-227
    • /
    • 2021
  • This building is a forty-eight story, 170 meters high multiple dwelling house with Dual Frame System (DFS), a coupled vibration system connecting two independent structures with hydraulic dampers. Generation of large deformation between two structures during earthquakes contributes to make the hydraulic dampers effective. To improve the aseismic performance more, this building adopts DFS hybrid system that consists of DFS and base isolation system. About typical floors, columns and beams are constructed with LRV precast concrete method that shorten the construction period greatly by integrating column-beam joints in column members.

Evaluation of Site-Specific Seismic Amplification Characteristics in Plains of Seoul Metropolitan Area (서울 평야 지역에 대한 부지 고유의 지진 증폭 특성 평가)

  • Sun, Chang-Guk;Yang, Dae-Sung;Chung, Choong-Ki
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.4 s.44
    • /
    • pp.29-42
    • /
    • 2005
  • Total 350 borehole profiles were selected from the database of borehole logs in Seoul, for the site-specific seismic evaluation at two 4km${\times}$4km plain areas. Equivalent-linear site response analyses for the selected 350 sites were conducted based on shear wave velocity (Vs) Profiles, which were determined from the N-Vs correlation established using borehole seismic testing results in the inland areas of Korea. Most sites were categorized as site classes C and D based on the mean Vs to 30 m in depth (Vs30) ranging from 250 to 550 m/s. The she periods of the plains in Seoul ranging between 0.1 and 0.4 sec were significantly lower than those of the western US, from which the site coefficients in Korea were derived. For plains in Seoul, the site coefficients, Fa's and Fv's specified in the Korean seismic design guide, underestimate the ground motion in short-period (0.1-0.5 sec) band and overestimate the ground motion in mid-period (0.4-2.0 sec) band, respectively, because ol the differences in the geotechnical conditions between Seoul and the western US, although the Fa's in several sites overestimate the motion due to the base Isolation effect resulted from the soft layer in soil deposit.

A Study on the Seismic Performance Design of Waterproofing Materials Applied Single-side Walls on Underground Structures (지하 구조물 외벽에 적용되는 방수재료의 구조체 거동 및 진동 대응 성능 설계 제안 연구)

  • Kim, Soo-Yeon;Kim, Meong-Ji;Oh, Sang-Keun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.43-50
    • /
    • 2020
  • In this study, the possibility of seismic performance design was proposed and the quality verification test method was reviewed as part of the design of waterproof performance in underground walls under accelerated environment conditions for waterproofing materials, which are barrier and finishing material that can prevent ingress or overflowing water from inside and outside of a building by attaching all of the construction materials used in construction structures. Considering the current state of earthquake-resistant design of construction materials in Korea and abroad, seismic product groups are rare and mostly dependent on construction methods because there are no regulations on materials, although there are still regulations on earthquake-resistant design in the building process under the current law. Overseas, it was possible to confirm that various building materials that gave seismic performance to non-structural materials, such as Japan, Canada, and Germany, are being developed. If it is possible to have a complementary response to earthquakes in the advanced external waterproofing materials, it can be expected to be applicable as leak prevention and prevention technology along with the seismic designed structure.