• 제목/요약/키워드: Base metal (BM)

검색결과 43건 처리시간 0.019초

Creep and creep crack growth behaviors for base, weld, and heat affected zone in a grade 91 weldment

  • Kim, Woo-Gon;Sah, Injin;Kim, Seon-Jin;Lee, Hyeong-Yeon;Kim, Eung-Seon
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.572-582
    • /
    • 2021
  • This study investigated the creep and creep crack growth (CCG) behavior of the base metal (BM), weld metal (WM), and heat affected zone (HAZ) in a Gr. 91 weldment, which was made by a shield metal arc weld process. A series of tensile, creep, and CCG tests were performed for the BM, WM, and HAZ at 550 ℃. Creep behavior of the BM, WM, and HAZ was analyzed in terms of various creep laws; Norton's power-law, Monkman-Grant relation and damage tolerance factor (λ), and their constants were determined. In addition, each CCGR law for the BM, WM, and HAZ was proposed and compared in terms of a C*-fracture parameter. The WM and HAZ revealed faster creep rate, lower rupture ductility, and faster CCGRs than the BM, but they showed a similar behavior in the creep and CCG. The CCGRs obtained in the present study exhibited a marginal difference when compared with those of RCC-MRx of currently elevated design code in France. A creep crack path in the HAZ plane progressed towards a weak fine-grained HAZ adjacent to the BM.

Alloy 617 모재와 용접부재의 저사이클피로 거동에 관한 실험적 고찰 (An Experimental Investigation on Low Cycle Fatigue Behavior of Alloy 617 Base Metal and Alloy 617/Alloy 617 Weld Joints)

  • 최필호;김선진;김우곤;김민환
    • 동력기계공학회지
    • /
    • 제18권5호
    • /
    • pp.115-121
    • /
    • 2014
  • Alloy 617 is the one of the leading candidate materials for intermediate heat exchangers(IHX) of a very high temperature reactor(VHTR) system. Some of the components are joined by many welding techniques and therefore the welded joints are inevitable in the construction of systems. In the present paper, the low cycle fatigue(LCF) behaviors of Alloy 617 base metal(BM) and the gas tungsten arc welded (GTAWed) weld joints(WJ) are investigated experimentally under strain controlled LCF tests. Fully axial total-strain controlled tests have been conducted at room temperature with total strain ranges of 0.6, 0.9, 1.2 and 1.5%. The weld joints have shown a lower fatigue lives compared with base metals at all the testing conditions. The weld joints have shown a higher cyclic stress response behavior than base metal. Both BM and WJ exhibited cyclic strain hardening behavior, depending on the total strain range. In addition, the strain-life parameters for BM and WJ were determined, based on Coffin-Manson equations.

해양차량 경량화용 마그네슘합금의 마찰용접 및 AE 특성 (Friction Welding and AE Characteristics of Magnesium Alloy for Lightweight Ocean Vehicle)

  • 공유식;이진경;강대민
    • 한국해양공학회지
    • /
    • 제25권6호
    • /
    • pp.91-96
    • /
    • 2011
  • In this paper, friction welded joints were constructed to investigate the mechanical properties of welded 15-mm diameter solid bars of Mg alloy (AZ31B). The main friction welding parameters were selected to endure reliable quality welds on the basis of visual examination, tensile tests, impact energy test, Vickers hardness surveys of the bonds in the area and heat affected zone (HAZ), and macrostructure investigations. The study reached the following conclusions. The tensile strength of the friction welded materials (271 MPa) was increased to about 100% of the AZ31B base metal (274 MPa) under the condition of a heating time of 1 s. The metal loss increased lineally with an increase in the heating time. The following optimal friction welding conditions were determined: rotating speed (n) = 2000 rpm, heating pressure (HP) = 35 MPa, upsetting pressure (UP) = 70 MPa, heating time (HT) = 1 s, and upsetting time (UT) = 5 s, for a metal loss (Mo) of 10.2 mm. The hardness distribution of the base metal (BM) showed HV55. All of the BM parts showed levels of hardness that were approximately similar to friction welded materials. The weld interface of the friction welded parts was strongly mixed, which showed a well-combined structure of macro-particles without particle growth or any defects. In addition, an acoustic emission (AE) technique was applied to derive the optimum condition for friction welding the Mg alloy nondestructively. The AE count and energy parameters were useful for evaluating the relationship between the tensile strength and AE parameters based on the friction welding conditions.

가스 냉온수기용 STS 304 배관 용접부의 부식특성에 관한 연구 (The Study on the Corrosion Characteristics of STS 304 Pipeline Steel Weldment for Gas Cooling & Heating System)

  • 김환식;임우조
    • 한국가스학회지
    • /
    • 제11권2호통권35호
    • /
    • pp.31-36
    • /
    • 2007
  • 가스 냉온수기용 STS 304 배관 용접부의 부식특성을 연구하기 위하여, 0.5M $H_2SO_4+0.01M$ KSCN 수용액 중에서 전기화학적 분극시험, 금속조직시험 과 경도시험을 실시하여 STS 304배관 용접부의 양극분극거동, 인가전위에 따른 부식거동, 용접부의 금속조직 및 경도거동를 고찰하였다. 다음과 같은 결론을 얻었다. 1) 임계양극전류밀도는 모재보다 용접열영향부에서 많이 배류되고, 기본부동태전위는 모재보다 용접열영향부에서 더 높게 된다. 2) 부동태전류밀도는 모재보다 용접열영향부에서 더 많이 배류되고, 부동태영역은 용접열영향부보다 모재가 더 크게 된다. 3)인가전압에 의한 용접열영향부의 전류밀도는 모재의 전류밀도보다 더 많이 배류된다.

  • PDF

마찰교반용접된 7075-T651 알루미늄 합금 용접부의 피로균열전파율의 공간적 불규칙성 (LT 방향의 시험편에 대하여) (Spatial Randomness of Fatigue Crack Growth Rate in Friction Stir Welded 7075-T651 Aluminum Alloy Welded Joints (Case of LT Orientation Specimen))

  • 정의한;김선진
    • 대한기계학회논문집A
    • /
    • 제37권9호
    • /
    • pp.1109-1116
    • /
    • 2013
  • 본 연구의 목적은 마찰교반용접된 7075-T651 알루미늄 합금 용접부에 대한 피로균열전파율의 공간적 불규칙성을 고찰하기 위한 것이다. 본 연구에서는 이전의 피로균열전파 실험 데이터를 활용하였다. 피로균열전파율의 공간적 불규칙성을 명확히 이해하기 위하여, 피로균열전파 실험은 일정 응력확대 계수범위 제어하에서 수행되었다. 재질, 즉 마찰교반용접된 7075-T651 알루미늄 합금 용접부의 용접재와 모재에 대하여 피로균열전파율의 공간적 불규칙성을 조사하기 위하여 실험 데이터가 해석되었다. 결론적으로 용접재의 변동성이 모재의 변동성보다 높게 나타났으며, Weibull 통계 해석에 의하여 변동성을 평가할 수 있음을 알았다.

냉난방용 배관 용접부의 전기화학적 부식특성에 관한 연구 (A Study on Characteristics of the Electrochemical Corrosion of Weld Zone for Refrigerating and Heating Systems Pipe)

  • 임우조;윤병두;김환식
    • 수산해양교육연구
    • /
    • 제19권1호
    • /
    • pp.84-90
    • /
    • 2007
  • This paper was studied on the electrochemical corrosion characteristics of weld zone for refrigerating and heating systems pipe. Austenitic stainless steel is widely applied to various fields of industry, because it is good to corrosion resistance and mechanical properties. But STS 304 is reliable to sensitization by heat cycle on welding. Therefore, in this study, electrochemical polarization test of STS 304 steel pipe manufactured by arc welding in tap water was carried out. And then polarization resistance behavior, uniform and local corrosion behaviors of base metal(BM), weld metal(WM) and heat affected zone(HAZ) for STS 304 pipe were investigated. The corrosion current density of STS 304 steel pipe is high in order of BM(153nA/cm2) < WM(614nA/cm2) < HAZ ($1.675{\mu}A/cm2$). The pitting potential of HAZ(238mV/SCE) for STS 304 is lower than BM(1206mV/SCE) and WM(369mV/SCE). Therefore, the local corrosion like pitting corrosion, galvanic corrosion and crevice corrosion of HAZ for STS 304 is more sensitive than BM and WM.

Alloy718 마찰용접재의 비커스 경도의 통계적 성질에 관한 연구 (As-welded 재의 경우를 중심으로) (A Study on Statistical Properties of Vickers Hardness of Friction Welded Parts in Alloy718 Steel (Part 1. As-welded))

  • 권혁용;최성웅;이상열;공유식;김선진
    • 한국해양공학회지
    • /
    • 제22권5호
    • /
    • pp.87-93
    • /
    • 2008
  • The objective of this paper is the investigation of the statistical properties of Vickers hardness (HV) of friction welded parts in nickel based super resisting steel, alloy 718 steel. First, we examine the statistical properties on the case of as-welded parts. Several Virkers indentations were made under same nominal conditions. This was repeated for three different applied loads, 100, 200 and 300g with a duration time, 10 second. The arithmetic mean of Vickers hardness in base metal (BM) materials is larger than that of HAZ in all applied loads. The measure of dispersion, that is, the coefficient of variation (COV) for BM and HAZ is decreased by increasing with the applied load. The distribution of Vickers hardness was not found to be symmetric type. The probability distribution of Vickers hardness was well followed Weibull distribution. The shape parameter and the scale parameter (characteristic hardness) are increased by increasing with the applied load, as both BM and HAZ.

Fatigue behavior of mechanical structures welded with different filler metal

  • Alioua, Abdelkader;Bouchouicha, Benattou;Zemri, Mokhtar;IMAD, Abdellatif
    • Advances in materials Research
    • /
    • 제6권3호
    • /
    • pp.233-243
    • /
    • 2017
  • This paper describes an investigation on the effect of using three different filler metals on fatigue behavior of mechanical structures welded. The welding is carried out on the steel A510AP used for the manufacture of gas cisterns and pipes. The welding process used is manual welding with coated electrodes and automatic arc welding. Compact tension CT50 specimen has been used. The three zones of welded joint; filler metal FM, heat affected zone HAZ and base metal BM have been investigated. The results show that the crack growth rate CGR is decreasing respectively in BM, FM and HAZ; however, this variation decreases when stress intensity factor SIF increases. For low values of SIF, the CGR is inferior in the over-matched filler metal of which the value of mismatch M is near unity, but for high values of M the CGR is superior, and the effect of the over-matching on CGR becomes negative. No deviation of the crack growth path has been noticed.

마찰교반용접된 7075-T651 알루미늄 판재의 피로균열전파의 거시적 및 미시적 관찰 (Marco and Microscopic Observations of Fatigue Crack Growth in Friction Stir Welded 7075-T651 Aluminum Alloy Plates)

  • 공유식;김선진
    • 동력기계공학회지
    • /
    • 제18권2호
    • /
    • pp.62-69
    • /
    • 2014
  • In this paper, in order to investigate the effects of marco and microscopic observations of fatigue crack growth in friction stir welded (FSWed) 7075-T651 aluminum alloy plates, fatigue crack growth tests were performed under constant amplitude loading condition at room temperature with three different pre-cack locations, namely base metal (BM-CL) and two kinds of pre-crack locations in welded joints, weld metal (WM-CL) and heat affected zone (HAZ-CL) specimens. The fatigue crack growth behavior of FSWed 7075-T651 aluminum alloy plates were discussed based on the marco and microscopic fractographic observations. The marcoscopic aspects of surface crack growth path for BM-CL and HAZ-CL specimens indicate relatively straight lines, however, the crack growth paths of WM-CL specimens grow first straight and by followed toward the TMAZ and HAZ. The microscopic aspects of fatigue fracture for BM-CL and HAZ-CL specimens indicate typical fatigue striation, but WM-CL showed intergranular fracture pattern by micro structural changes of FSW process.

Al7075-T651의 마찰교반용접된 접합부의 피로균열전파율의 통계적 분포 (Statistical Distribution of Fatigue Crack Growth Rate for Friction Stir Welded Joints of Al7075-T651)

  • 안석환;김선진
    • 동력기계공학회지
    • /
    • 제17권4호
    • /
    • pp.86-93
    • /
    • 2013
  • This paper deals with the effects of driving force and material properties on statistical distribution of fatigue crack growth rate (FCGR) for the friction stir welded joints of Al 7075-T651 aluminum plate. In this work, the statistical probability distribution of fatigue crack growth rate was analyzed by using our previous constant stress intensity factor range controlled fatigue crack growth test data. As far as this study are concerned, the statistical probability distribution of fatigue crack growth rate for the friction stir welded (FSWed) joints was found to evaluate the variability of fatigue crack growth rate for base metal (BM), heat affected zone (HAZ) and weld metal (WM) specimens. The probability distribution of fatigue crack growth rate for FSWed joints was found to follow well log-normal distribution. The shape parameter of BM and HAZ was decreased with increasing the driving force, however, the shape parameter of WM was decreased and increased with increasing the driving force. The scale parameter of BM, HAZ and WM was increased with the driving force.