• Title/Summary/Keyword: Base excitation

Search Result 227, Processing Time 0.022 seconds

Phase Change for One to One Resonance of Nonlinear Cantilever Beam (비선형 외팔보의 일대일 공진에서의 위상변화)

  • Pak, Chul-Hui;Cho, Chong-Du;Cho, Ki-Cheol;Kim, Myoung-Gu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.48-54
    • /
    • 2007
  • The cantilever beam with nonlinearity has many dynamic characteristics of nonlinear vibration. Nonlinear terms of a flexible cantilever beam include inertia, spring, damping, and warping. When the beam is given basic harmonic excitation, it shows planar and nonplanar vibrations due to one-to-one resonance. And when the one-to-one resonance occurs, the flexible beam shows different behaviors in those vibrations. For the one-to-one resonance occurring in each mode, the phase value of the planar vibration is different from that of the nonlinear vibration. This paper investigates the phase change and the phase difference between such planar and nonplanar vibrations which are caused by one-to-one resonance.

A Study on the Adaptability of Hybrid Mass Damper for the Vibration Control of Structure under Base Excitation (지반 기진력을 받는 구조물의 진동 제어를 위한 Hybrid Mass Damper 의 유용성 연구)

  • Lim, Chae-Wook;Chung, Tae-Young;Moon, Seok-Jun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.268-275
    • /
    • 2000
  • A hybrid mass damper that combines a tuned mass damper and an actuator has been recognized to be one of the most promising devices for vibration control of a tall building subjected to dynamic loads such as wind and earthquake. In this paper, in order to reduce vibration levels of a 5-story test structure, a hybrid mass damper using AC-servomotor was designed and developed. And control performances using HMD and TMD under random and earthquake excitations are compared through experimental test. It is confirmed that it is more effective to reduce the vibration levels of the test structure using HMD especially for earthquake excitation.

  • PDF

Multi-objective Fuzzy Control of a Spacial Structure using Smart Base Isolation System (스마트 면진시스템을 이용한 대공간 구조물의 다목적 퍼지제어)

  • Kang, Joo-Won;Kim, Hyun-Su;Lim, Jun-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.2
    • /
    • pp.89-99
    • /
    • 2011
  • In this study, a smart base isolation system has been proposed to reduce dynamic responses of a spacial structure subjected to seismic excitation. MR dampers and low damping elastomeric bearings were used to compose a smart base isolation system and its vibration control performance has been investigated compared to that of the optimally designed lead-rubber bearing (LRB) isolation system. Control performance of smart base isolation system depends on control algorithm. Fuzzy controller was used in this study to effectively control the spacial structure having a smart base isolation system. Dynamic responses of the spacial structure with isolation system is conflict with base drifts and thus these two responses are selected as objective functions to apply multi-objective genetic algorithm to optimization of fuzzy controller. Based on numerical simulation results, it has been shown that the smart base isolation system proposed in this study can drastically reduce base drifts and seismic responses of the example spacial structure in comparison with the optimally designed LRB isolation system.

Time domain Reduction Method for Electromagnetic Transients Study: Equivalent Driving-Point Impedance Model using Prony Analysis (과도현상 해석을 위한 시간 영역에서의 등가축약법 :프로니 해석기법을 이용한 등가 구동점 임피던스 모델의 구성)

  • 홍준희;박종근
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.4
    • /
    • pp.687-690
    • /
    • 1994
  • This paper presents a method of obtaining transmission network equivalents from the network's response to the pulse excitation signal. Proposed method is base on Prony signal analysis and jtransfer function identification technique. As a result Thevenin-type of discrete-time filter model can be generated. It can reproduce the driving point impedance characteristic of the network.

  • PDF

Seismic isolation of hospital buildings

  • Soldatova, Liudmila;Jumukov, Sulaiman
    • Smart Structures and Systems
    • /
    • v.2 no.4
    • /
    • pp.329-337
    • /
    • 2006
  • This paper illustrates an analytical investigation of the vibration parameters of buildings on sliding seismic isolation bearings with elastic limiters of the relative displacement. The installation scheme of sliding bearings and elastic limiters for the separate unit of a 4 storey hospital building with brick walls is designed. The analysis of the vibrations of the hospital building is conducted for harmonic base excitation.

Sensitivity analysis for seismic response of a ship-block system

  • Kuchaksarai, Masoud Moghaddasi;Bargi, Khosrow
    • Structural Engineering and Mechanics
    • /
    • v.23 no.3
    • /
    • pp.309-323
    • /
    • 2006
  • In this paper, seismic response of a free-standing ship located in a dry dock and supported by an arrangement of n keel blocks due to base excitation is addressed. Formulation of the problem including derivation of governing equations in various modes of motion as well as transition conditions from one mode to another is given in Moghaddasi and Bargi (2006) by same authors. On the base of numerical solution for presented formulation, several numbers of analyses are conducted to study sensitivity of system's responses to some major contributing parameters. These parameters include friction coefficients between contacting surfaces, block dimensions, peak ground acceleration, and the magnitude of vertical ground acceleration. Finally, performance of a system with usual parameters normally encountered in design is investigated.

A Study on Nonlinear Rocking Vibration Characteristics of Rigid Block (In the Case of Sliding Occurrence) (강체 블록의 비선형 로킹진동특성에 관한 연구 (미끄럼이 있는 경우))

  • 정만용;김정호;김선규;나기대;양인영
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 2000
  • This paper deals with rocking response behavior of rigid block structure subjected to horizontal excitation. A strict consideration of impact and sliding between the block and base is essential to investigate the rocking vibration characteristics because the rocking behavior were greatly influenced by the impact and sliding motion. Therefore, not only restitution coefficient between the block and base but also the energy dissipation rate which is associated with sliding motion, and the static and kinetic friction coefficient between those should be included in the modeling of rocking system. The analytic program was developed to be able to simulate the experimental responses of the block subjected to horizontal sinusoidal excitations. By using this program, rocking responses were numerically calculated by the nonlinear equations for rocking system. From the response simulation and rocking vibration experiment, the following results were obtained. The rocking responses are affected by the impact motion due to energy dissipation and friction and provide very complex behavior. The toppling condition of the block is also influenced by the impact motion and sliding motion.

  • PDF

A comparative study on aseismic performances of base isolation systems for multi-span continuous bridge (다경간 연속교에 대한 면진용 교좌장치의 내진성능 비교연구)

  • Park, Kyu-Sik;Lee, Chong-Heon;Lee, In-Won
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.383-390
    • /
    • 2001
  • Various base isolation systems, which are widely used, are compared for aseismic performances of multi-span continuous bridge. They are the P-F, RB, LRB, R-FBI and EDF systems. Sensitivity analyses are carried out to determine the design parameters of various devices. The design parameters, natural period of the isolated bridge and friction coefficient of the bearing, are determined by the reciprocal relationship between displacement and bending moment of the structure. Then the relative effectiveness of the bearings is described. Bridge with the R-FBI system shows the smallest peak displacement of deck whereas bridge with the EDF system shows the smallest peak bending moment of the lower end of pier in numerical examples. Furthermore, the peak responses of bridge with the friction type bearing are less sensitive to substantial variations in the frequency range and intensity of the ground excitation than those with the rubber type bearing.

  • PDF

Numerical and experimental studies of a building with roller seismic isolation bearings

  • Ortiz, Nelson A.;Magluta, Carlos;Roitman, Ney
    • Structural Engineering and Mechanics
    • /
    • v.54 no.3
    • /
    • pp.475-489
    • /
    • 2015
  • This study presents the validation of a numerical model developed for dynamic analysis of buildings with roller seismic isolation bearings. Experimental methods allowed validation of the motion equations of a physical model of a building with and without roller bearings under base excitation. The results are presented in terms of modal parameters, frequency response functions (FRFs) and acceleration response. The agreement between numerical and experimental results proves the accuracy of the developed numerical model. Finally, the performance of the constructed seismic protection system is assessed through a parametric study.

Dynamic response of empty steel tanks with dome roof under vertical base motion

  • Virella, Juan C.;Godoy, Luis A.
    • Steel and Composite Structures
    • /
    • v.9 no.2
    • /
    • pp.119-130
    • /
    • 2009
  • This paper reports results of the structural response of empty steel tanks under vertical ground motions. The tanks are modeled using a finite element discretization using shell elements, and the vertical motion is applied and analyzed using nonlinear dynamics. Several excitation frequencies are considered, with emphasis on those that may lead to resonance of the roof. The computational results illustrate that as the base motion frequency is tuned with the frequency of the first roof-mode of the tank, the system displays large-amplitude displacements. For frequencies away from such mode, small amplitude displacements are obtained. The effect of the height of the cylinder on the dynamic response of the tank to vertical ground motion has also been investigated. The vertical acceleration of the ground motion that induces significant changes in the stiffness of the tank was found to be almost constant regardless of the height of the cylinder.