• Title/Summary/Keyword: Base condition

Search Result 1,580, Processing Time 0.032 seconds

Effects of $K_{II}$ on fatigue crack propagation behavior of wedzone in generally rolled steel for marine structure (박용 구조물용 일반압연강 용접부의 피로균열 전파거동에 미치는 $K_{II}$의 영향)

  • 한문식;김상철
    • Journal of Welding and Joining
    • /
    • v.6 no.3
    • /
    • pp.43-55
    • /
    • 1988
  • An experimental study was carried out to identify the fatigue fractue behavior of weld zone in generally rolled steel for marine structure. The bending an shear loads were applied simultaneously on the specimens to simulate real load condition for marine structure. The effect of the stress intensity factor under mode I with II loading condition on the initiation and the propagation of a crack were investigated, with particular emphaiss on mode II. When the $K_{II}$ stress intensiy factor in mode II was applied under mode I load condition, the growth behavior of a crack seems to be affected mainly by the anisotropic characteristic of materials. Especially, when the crack was located in and near the weld zone and parallel to th weld line, the propagation behaviour was turned out to be quite different from that of the base metal along the direction transverse to the weld line. In general, the propagation veiocity of the cracks in and near the weld zone was found to be slower that the velocity in base metal.

  • PDF

A Study on the Educational Environment Composition for High School Equalization Policy - Focused on the Space Composition and Distribution of Departmentalized Classroom System in High School in Kangwon-Do based on rural village - (고교 평준화를 위한 교육환경 구성에 관한 연구 - 농촌기반 강원도내 교과교실제 운영 고등학교의 공간 구성 및 면적분포를 중심으로-)

  • Kim, Hak Cheol
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.17 no.4
    • /
    • pp.83-90
    • /
    • 2015
  • The equalization policy needs various factors-standardization of educational environment, standardization of learning method, standardization of teacher ability, etc. Especially the standardization of educational environment is the base of various factors. But the recent educational environment condition of high school is not equal. The purpose of this study is to provide basic data for equal learning environment condition in high school applying departmentalized classroom system. This study has progressed through analyzing on 9 remodelling case of high school in Gangwon-Do. The method of this study is visiting high schools that operate the system, grasping the condition for environment composition, and investigating and analyzing practical use of the environment. The results of this study are summarized as follows: 1) The space compositions for departmentalized classroom system are generally desirable, but some schools take irrational space composition, especially on home base-teacher laboratory, classroom-teacher laboratory. 2) The space area distributions are different in every school. This result is based on not taking standard criterion on space area distribution.

EVALUATION OF FRICTION WELDABILITY OF TYPE 5052 ALALLOY/LOW CARBON STEEL JOINT.

  • Kim, Kyung-Kyun;Lee, Won-Bae;Yeon, Yun-Mo;Kim, Dae-Up;Jung, Seung-Boo
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.528-533
    • /
    • 2002
  • The mechanical and metallurgical properties of friction welded joints type 5052 Al alloy/A36 steel have been studied in this paper. The joint strength increased with increasing upset pressure and friction time till it reached the critical value. The joint strength was fixed at low strength compare to that of base metal in the case of increasing friction time. Microstructure of 5052 Al alloy was greatly deformed near the weld interface. The very fine and equaxied grain structure was observed at the near interface. The elongated grain was formed outside dynamic recrystallizatoin region at the peripheral part, while the A36 steel' side was not deformed. The hardness of the near interface was slightly softer than that of 5052 Al alloy base metal. The maximum softening width was about 8mm from the interface. In the present work, the friction welding condition, t$_1$=0.5sec, P$_2$=137.5MPa, showed a maximum joint strength (202MPa) when friction pressure, upset time and rotation speed were fixed at 75MPa, 5sec, 2000rev/min and these were the optimum friction welding condition of 5052Al/A36 steel joints.

  • PDF

A Study on Development of Expert System for Dimension and Weld Designs of Horizontal-Type Pressure Vessel (횡형압력용기의 치수 및 용접설계를 위한 전문가시스템의 개발에 관한 연구)

  • 서철웅;나석주
    • Journal of Welding and Joining
    • /
    • v.10 no.4
    • /
    • pp.199-212
    • /
    • 1992
  • Expert system is a practical application part of the artificial intelligence and can be generally described as a computer-based system designed to simulate the knowledge and reasoning of a human expert, and to make that knowledge conveniently available to other people in a useful way. Expert systems consist of three major components, knowledge base, inference engine and user interface. In this paper, it is aimed to construct a prototype system to design the horizontal-typed pressure vessel. To do this, a representative artificial programming language, Turbo Prolog, was employed, and the knowledge representation was mainly done by the production rule such as "If(condition), than (action)" style and by the predicate logic. In the developed system, it was quite easy to represent the knowledge of "If(condition), then (action)"style and by the predicate logic. In the developed system, it was quite easy to represent the knowledge of "If(condition). then(action)" style and the various table-like data. It was also effective to represent the graphics. Though this expert system is by now small and incomplete, it is possible to expand it to a larger and refined system later.rger and refined system later.

  • PDF

Exhaust Emissions Characteristics on Driving Cycle Mode and Ignition Advance Condition Change of CNG/LPLI Bi-Fuel Vehicle (CNG/LPLI Bi-Fuel 자동차에서 주행시험 모드와 점화진각에 따른 배출가스 특성)

  • Cho, Seungwan;Kim, Seonghoon;Kwon, Seokjoo;Park, Sungwook;Jeon, Chunghwan;Seo, Youngho
    • Journal of ILASS-Korea
    • /
    • v.19 no.1
    • /
    • pp.40-46
    • /
    • 2014
  • Recently rise in oil prices feet the burden on not only diesel vehicle driver but also LPG vehicle driver, and get interested in various way to reduce fuel costs. In this study discuss on exhaust emissions characteristics on driving cycle mode and ignition advance condition change of CNG/LPLI Bi-Fuel vehicle. Experimental test was performed by changing the conditions of fuel (LPG/CNG), spark advance (Base, $10^{\circ}CA$, $15^{\circ}CA$), and driving mode (FTP-75, HWFET, and NEDC). In case of CO emission, in the order of CNG Base, CNG S/A10, S/A15 condition are average reduced -21%, -35%, -29% respectively compared to LPG fuel. The active emission reduction from the initial engine start, spark retard is likely to be beneficial in catalyst warm-up and improve combustion stability rather than spark advance.

Determination and Optimization of welding condition using Fuzzy Expert System for MAG-Welding (퍼지 전문가 시스템을 활용한 적정 용접조건의 설정과 최적화)

  • J.Y. Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.4
    • /
    • pp.136-141
    • /
    • 1995
  • Determination and optimization of proper welding condition are very important tasks to be directly related to weld quality and productivity. On this research the relationship between welding parameters and results is investigated systematically. Theoretical method, statistical analysis of experimental data and analysis of empirical knowledge are applied for this work. These results are represented by empirical equations, fuzzy rules and artificial intelligent knowledge forms in the knowledge base. The approximate reasoning of fuzzy expert system and the information in the knowledge base are used for recommendation of suitable welding condition, and optimization of welding parameter which is based on the evaluation of welding results by user.

  • PDF

Seismic response variation of multistory base-isolated buildings applying lead rubber bearings

  • Islam, A.B.M. Saiful;Al-Kutti, Walid A.
    • Computers and Concrete
    • /
    • v.21 no.5
    • /
    • pp.495-504
    • /
    • 2018
  • The possibility of earthquakes in vulnerable regions indicates that efficient technique is required for seismic protection of buildings. During the recent decades, the concept is moving towards the insertion of base isolation on seismic prone buildings. So, investigation of structural behavior is a burning topic for buildings to be isolated in base level by bearing device. This study deals with the incorporation of base isolation system and focuses the changes of structural responses for different types of Lead Rubber Bearing (LRB) isolators. A number of sixteen model buildings have been simulated selecting twelve types of bearing systems as well as conventional fixed-base (FB) scheme. The superstructures of the high-rise buildings are represented by finite element assemblage adopting multi-degree of freedoms. Static and dynamic analyses are carried out for FB and base isolated (BI) buildings. The dynamic analysis in finite element package has been performed by the nonlinear time history analysis (THA) based on the site-specific seismic excitation and compared employing eminent earthquakes. The influence of the model type and the alteration in superstructure behavior of the isolated buildings have been duly assessed. The results of the 3D multistory structures show that the lateral forces, displacement, inertia and story accelerations of the superstructure of the seismic prone buildings are significantly reduced due to bearing insertion. The nonlinear dynamic analysis shows 12 to 40% lessening in base shear when LRB is incorporated leading to substantial allowance of horizontal displacement. It is revealed that the LRB isolators might be potential options to diminish the respective floor accelerations, inertia, displacements and base shear whatever the condition coincides. The isolators with lower force intercept but higher isolation period is found to be better for decreasing base shear, floor acceleration and inertia force leading to reduction of structural and non-structural damage. However, LRB with lower isolator period seems to be more effective in dropping displacement at bearing interface aimed at reducing horizontal shift of building structure.

Friction Welding and AE Characteristics of Magnesium Alloy for Lightweight Ocean Vehicle (해양차량 경량화용 마그네슘합금의 마찰용접 및 AE 특성)

  • Kong, Yu-Sik;Lee, Jin-Kyung;Kang, Dae-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.91-96
    • /
    • 2011
  • In this paper, friction welded joints were constructed to investigate the mechanical properties of welded 15-mm diameter solid bars of Mg alloy (AZ31B). The main friction welding parameters were selected to endure reliable quality welds on the basis of visual examination, tensile tests, impact energy test, Vickers hardness surveys of the bonds in the area and heat affected zone (HAZ), and macrostructure investigations. The study reached the following conclusions. The tensile strength of the friction welded materials (271 MPa) was increased to about 100% of the AZ31B base metal (274 MPa) under the condition of a heating time of 1 s. The metal loss increased lineally with an increase in the heating time. The following optimal friction welding conditions were determined: rotating speed (n) = 2000 rpm, heating pressure (HP) = 35 MPa, upsetting pressure (UP) = 70 MPa, heating time (HT) = 1 s, and upsetting time (UT) = 5 s, for a metal loss (Mo) of 10.2 mm. The hardness distribution of the base metal (BM) showed HV55. All of the BM parts showed levels of hardness that were approximately similar to friction welded materials. The weld interface of the friction welded parts was strongly mixed, which showed a well-combined structure of macro-particles without particle growth or any defects. In addition, an acoustic emission (AE) technique was applied to derive the optimum condition for friction welding the Mg alloy nondestructively. The AE count and energy parameters were useful for evaluating the relationship between the tensile strength and AE parameters based on the friction welding conditions.

The Study of the Effects of Nonthermal Plasma-Photocatalyst combined Reactor on Hydrocarbon Decomposition and Reduction during Cold Start and Warm-up in a SI Engine (스파크 점화기관 냉간 시동시 플라즈마 광촉매 복합장치에 의한 탄화수소 화합물 저감에 관한 실험적 연구)

  • Lee, Taek-Heon;Chun, Kwang-Min;Chun, Bae-Hyeock;Shin, Young-Gy
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.169-178
    • /
    • 2001
  • Among the recent research ideas to reduce hydrocarbon emissions emitted from SI engines till light-off of catalyst since cold start are those exploiting non-thermal plasma technique and photo-catalyst that draws recent attention by virtue of its successful application to practical use to clean up the atmosphere using the feature of its relative independence on temperature. Based on the previous research results obtained with model exhaust gases using an experimental emissions reduction system that utilizes the non-thermal plasma and photo-catalyst technique, further investigation was conducted on a production N/A 1.5 liter DOHC engine during cold start to warm-up. For the effects of non-thermal plasma-photocatalyst combined reactor, 10% concentration reduction was achieved with the fuel component paraffins, and the large increase in non-fuel paraffinic components and acetylene concentrations were similar to those of base condition. However the absolute value was locally a bit higher than those of base condition since the products was made from the dissociation and decomposition of highly branched paraffins by plasma-photocatalyst reactor. Olefinic components were highly decomposed by about 75%, due to these excellent decompositions of olefins which have relatively high MIR values, and the SR value was 1.87 that is 30% reduction from that of base condition, then, the photochemical reactivity was lowered.

  • PDF

Fundamental Study on Ni-Base Self-Fluxing Alloy Coating by Thermal Spraying(I) - Effect of Splat Behavior of Sprayed Particles on Mechanical Properties of Coating Layer - (Ni-기 자융성합금의 코팅에 관한 기초적 연구(I) - 용사입자의 편평거동이 코팅층의 기계적 특성에 미치는 영향 -)

  • Kim, Y.S.;Kim, H.S.;Nam, K.W.
    • Journal of Power System Engineering
    • /
    • v.1 no.1
    • /
    • pp.70-79
    • /
    • 1997
  • Ni-base self-fluxing alloy powder particles were flame sprayed onto the SS400 mild steel substrate surface. The effects of both substrate temperature and spraying distance on the splat behavior of sprayed particles were examined. The results obtained are summarized as follows: 1) In the splat behavior of Ni-base self-fulxing alloy particles sprayed onto the SS400 mild steel substrate, splashing was observed under the room temperature condition. On the contrary, it showed circular plate pattern in the substrate temperature range over 373K. 2) It was cleared that there was close relationship between mechanical properties of coating layer and splat behavior of sprayed particles. 3) From the experimental results, optimum spraying conditions showed excellent mechanical properties in the case of Ni-base self fluxing alloy sprayed onto the SS400 mild substrate were 473K of substrate temperature and 250mm of spraying distance.

  • PDF