• Title/Summary/Keyword: Base Frame

Search Result 584, Processing Time 0.027 seconds

Earthquake Simulation Tests of A 1:5 Scale Gravity Load Designed 3-Story Reinforced Concrete Frame (중력하중 설계된 1:5 축소 3층 철근콘크리트 골조의 지진모의실험)

  • 이한선;우성우
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.241-252
    • /
    • 1998
  • The objective of the research stated herein is to observe the actual responses of a low-rise nonseismic moment-resisting reinforced concrete frame subjected to varied levels of earthquake ground motions. First, the reduction scale for the model was determined as 1 : 5 considering the capacity of the shaking table to be used and the model was manufactured according to the similitude law. This model was, then, subjected to the shaking table motions simulating Taft N21E component earthquake ground motions, whose peak ground accelations (PGAs) were modified to 0.12g, 0.2g, 0.3g, and 0.4g. The lateral accelerations and displacements at each story and local deformations at the critical reginos of the structure were measured. The base shear was measured by using self-made load cells. Before and after each earthquake simulation test, free vibration tests were performed to find the change in the natural period and damping ratio of the model. The test data on the global and local behaviors are interpreted. The model showed the linear elastic behavior under the Taft N21E motion with the PGA if 0.12g, which represents the design earthquake in Korea. The maximum base shear was 1.8tf, approximately 4.7 times the design base shear. The model revealed fairly good resistance to the higher level of earthquake simulation tests. The main components of its resistance to the high level of earthquakes appeared to be 1) the high overstrength, 2) the elongation of the fundamental period, and 3) the minor energy dissipation by inelastic deformations. The drifts of the model under these tests were approximately within the allowable limit.

Earthquake Response of Mid-rise to High-rise Buildings with Friction Dampers

  • Kaur, Naveet;Matsagar, V.A.;Nagpal, A.K.
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.4
    • /
    • pp.311-332
    • /
    • 2012
  • Earthquake response of mid-rise to high-rise buildings provided with friction dampers is investigated. The steel buildings are modelled as shear-type structures and the investigation involved modelling of the structures of varying heights ranging from five storeys to twenty storeys, in steps of five storeys, subjected to real earthquake ground motions. Three basic types of structures considered in the study are: moment resisting frame (MRF), braced frame (BF), and friction damper frame (FDF). Mathematical modelling of the friction dampers involved simulation of the two distinct phases namely, the stick phase and the slip phase. Dynamic time history analyses are carried out to study the variation of the top floor acceleration, top floor displacement, storey shear, and base-shear. Further, energy plots are obtained to investigate the energy dissipation by the friction dampers. It is seen that substantial earthquake response reduction is achieved with the provision of the friction dampers in the mid-rise and high-rise buildings. The provision of the friction dampers always reduces the base-shear. It is also seen from the fast Fourier transform (FFT) of the top floor acceleration that there is substantial reduction in the peak response; however, the higher frequency content in the response has increased. For the structures considered, the top floor displacements are lesser in the FDF than in the MRF; however, the top floor displacements are marginally larger in the FDF than in the BF.

Key technologies research on the response of a double-story isolated structure subjected to long-period earthquake motion

  • Liang Gao;Dewen Liu;Yuan Zhang;Yanping Zheng;Jingran Xu;Zhiang Li;Min Lei
    • Earthquakes and Structures
    • /
    • v.26 no.1
    • /
    • pp.17-30
    • /
    • 2024
  • Earthquakes can lead to substantial damage to buildings, with long-period ground motion being particularly destructive. The design of high-performance building structures has become a prominent focus of research. The double-story isolated structure is a novel type of isolated structure developed from base isolated structure. To delve deeper into the building performance of double-story isolated structures, the double-story isolated structure was constructed with the upper isolated layer located in different layers, alongside a base isolated structure for comparative analysis. Nonlinear elastoplastic analyses were conducted on these structures using different ground motion inputs, including ordinary ground motion, near-field impulsive ground motion, and far-field harmonic ground motion. The results demonstrate that the double-story isolated structure can extend the structural period further than the base isolated structure under three types of ground motions. The double-story isolated structure exhibits lower base shear, inter-story displacement, base isolated layer displacement, story shear, and maximum acceleration of the top layer, compared to the base isolated structure. In addition, the double-story isolated structure generates fewer plastic hinges in the frame, causes less damage to the core tube, and experiences smaller overturning moments, demonstrating excellent resistance to overturning and a shock-absorbing effect. As the upper isolated layer is positioned higher, the compressive stress on the isolated bearings of the upper isolated layer in the double-story isolated structure gradually decreases. Moreover, the compressive stress on the isolated bearings of the base isolated layer is lower compared to that of the base isolated structure. However, the shock-absorbing capacity of the double-story isolated structure is significantly increased when the upper isolated layer is located in the middle and lower section. Notably, in regions exposed to long-period ground motion, a double-story isolated structure can experience greater seismic response and reduced shock-absorbing capacity, which may be detrimental to the structure.

A Decentralized Frame Synchronization System for Ad-hoc Inter-Vehicle Communication Networks (Ad-hoc 차량통신 네트워크를 위한 자율분산 동기화 시스템)

  • Kim, Young-An;Hong, Choong-Seon
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.2
    • /
    • pp.166-172
    • /
    • 2008
  • This paper proposes an autonomous decentralized frame synchronization system for Ad-hoc Inter-Vehicle Communication Network (IVCN). We have to consider the feature of Ad-hoc IVCN: "time variant" about the number and the location of vehicles and receive power in IVCN, frame timing, and fading. Proposed scheme is different from other decentralized synchronization systems that have association with a fixed base station, and from centralized Personal Communication Systems. This system includes an autonomous decentralized frame synchronization scheme for Ad-hoc IVCN, a high-speed algorithm, a protocol for a newly joining subscriber in IVCN, and a utilization of spread spectrum ranging for frame timing error of the system under highway conditions. Performance evaluation of proposed scheme is validated through simulation. It is shown that Ad-hoc IVCN can be carried out among one and surrounding vehicles in such environment.

Frame Synchronization for Mobile WiMAX Femtocells Using IEEE802.11 Based Wireless Backhaul (IEEE 802.11 기반의 무선 백홀을 사용하는 Mobile WiMAX 펨토셀을 위한 프레임 동기화 기법)

  • Choi, Ji-Hoon;Oh, Hyuk-Jun;Yun, Jae-Yeun;Ko, Hyun-Mo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.8C
    • /
    • pp.667-679
    • /
    • 2010
  • The use of femtocells in buildings and homes has been widely studied as a means to enlarge the cell coverage and increase the network capacity of mobile communication systems. Femtocells for Mobile WiMAX (M-WiMAX) using time division duplexing (TDD) requires frame synchronization with neighboring base stations to avoid interference between uplink and downlink signals. In this paper, we propose a new frame synchronization method for femtocell using IEEE 802.11 based wireless backhaul, which transfers the time information of mobile network to femtocells via the beacon signal provided by IEEE 802.11. Also, in order to reduce timing error of the proposed method, we modify the collision avoidance scheme in the transmitter of IEEE 802.11 and apply a timing estimation technique designed in the sense of least squares to the receiver of IEEE 802.11. Through computer simulations using the proposed scheme, we evaluate the performance of frame synchronization for femtocells and show that the recovered timing information satisfies the timing specification defined by M-WiMAX standard.

Study on the Fire Behavior of Spring Bed Mattress with and Without a Cooling Frame (냉각프레임 설치 유무에 따른 스프링 침대 매트리스의 화재성상에 관한 연구)

  • Seo, Bo-Youl;Park, Kye-Won;Hong, Won-Hwa
    • Fire Science and Engineering
    • /
    • v.32 no.2
    • /
    • pp.24-29
    • /
    • 2018
  • To improve the fire safety of spring bed mattress, a cooling frame including cooling material (water) was made and a cooling frame was installed under the bed mattress or between the bed mattress and bed mattress base; fire tests (real scale) were conducted with or without a cooling frame. Similar fire behavior was observed at the beginning of the test (approximately 3 minutes). Subsequently, rapid fire growth in the mattress without a cooling frame, but with a cooling frame, the decline progressed without growth. The flame spread on the top surface of the bed mattress was similar in the semicircular direction, and the average flame speed velocity was analyzed at approximately 0.005 m/s. The maximum flame height was found to be approximately 2.7 m without a cooling frame, and approximately 1.8 m with a cooling frame installed. In addition, the maximum heat release rate was measured to be approximately 740 kW without a cooling frame, and approximately 400 kW with a cooling frame installed. As a result, the flame height and heat release rate were reduced when the bed mattress was fired through the installed cooling frame.

Dynamic Behaviour of Masonry inFilled Reinforced Concrete Frames with Non-Seismic Details (진동대실험을 통한 비내진상세를 가지는 RC 골조의 조적채움벽 유무에 따른 동적 거동 평가)

  • Baek, Eun-Rim;Kim, Kyung-Min;Cheon, Ju-Hyun;Oh, Sang-Hoon;Lee, Sang-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.121-129
    • /
    • 2017
  • In this paper, the shake table test for the masonry infilled reinforced concrete frame with non-seismic details was carried out in order to evaluate its dynamic behaviour and damage under seismic condition. The tested specimens were the RC frame and the masonry infilled RC frame and the dynamic characteristics, such as a resonant period, acceleration response, displacement response and base shear force response, were compared between them. As a result of the shake table test, RC frame specimen had flexural cracks at the top and bottom of the column and shear cracks at the joints. In the case of masonry infilled RC frame, the damage of the frame was relatively minor but the sliding cracks and diagonal shear cracks on the masonry wall were severe at the final excitation. The resonant period of infilled RC frame specimen was shorter than that of the RC frame specimen because the masonry infill contributed to increase the stiffness. The maximum displacement response of the infilled RC frame specimen was decreased by about 20% than the RC frame specimen. It was analyzed that the masonry infill wall applied in this study contributed to increase the lateral strength of the RC frame with non - seismic detail by about 2.2 times and the stiffness by about 1.6 times.

Fabrication of Stable Cartilage Framework for Microtia in Incomplete Synchondrosis

  • Cho, Byung-Chae;Lee, Jung-Hun;Choi, Kang-Young;Yang, Jung-Dug;Chung, Ho-Yun
    • Archives of Plastic Surgery
    • /
    • v.39 no.2
    • /
    • pp.162-165
    • /
    • 2012
  • The synchondrosis between the sixth and seventh costal cartilage is usually used for the base frame in autogenous ear reconstruction. If the synchondrosis is loose, a variety of modifications can be devised. This report introduces new methods for these problems. In cases of incomplete synchondrosis, only the surface of the base block margin was smoothly tapered without carving for the removal of the conchal deepening. The secure fixation of the two segments (helix and antihelix) to the base block using fine wire sutures gave stability to the unstable basal frame. After confirming that all the segments were assembled in one stable piece, the remaining conchal deepening of the basal framework was removed, and the outer lower portion of the basal cartilage was trimmed along its whole length. A total of 10 consecutive patients with microtia, ranging from 8 to 13 years old, were treated from 2008 to 2009. The follow-up period was 6 months to 2 years. Despite incomplete synchondrosis, the stable frameworks were constructed using the authors' method and aesthetically acceptable results were achieved. The proposed method can provide an easy way to make a stable cartilage framework regardless of the variable conditions of synchondrosis.

Seismic retrofitting by base-isolation of r.c. framed buildings exposed to different fire scenarios

  • Mazza, Fabio;Mazza, Mirko
    • Earthquakes and Structures
    • /
    • v.13 no.3
    • /
    • pp.267-277
    • /
    • 2017
  • Base-isolation is now being adopted as a retrofitting strategy to improve seismic behaviour of reinforced concrete (r.c.) framed structures subjected to far-fault earthquakes. However, the increase in deformability of a base-isolated framed building may lead to amplification in the structural response under the long-duration horizontal pulses of high-magnitude near-fault earthquakes, which can become critical once the strength level of a fire-weakened r.c. superstructure is reduced. The aim of the present work is to investigate the nonlinear seismic response of fire-damaged r.c. framed structures retrofitted by base-isolation. For this purpose, a five-storey r.c. framed building primarily designed (as fixed-base) in compliance with a former Italian seismic code for a medium-risk zone, is to be retrofitted by the insertion of elastomeric bearings to meet the requirements of the current Italian code in a high-risk seismic zone. The nonlinear seismic response of the original (fixed-base) and retrofitted (base-isolated) test structures in a no fire situation are compared with those in the event of fire in the superstructure, where parametric temperature-time curves are defined at the first level, the first two and the upper levels. A lumped plasticity model describes the inelastic behaviour of the fire-damaged r.c. frame members, while a nonlinear force-displacement law is adopted for the elastomeric bearings. The average root-mean-square deviation of the observed spectrum from the target design spectrum together with a suitable intensity measure are chosen to select and scale near- and far-fault earthquakes on the basis of the design hypotheses adopted.

Development of Expert Systems using Automatic Knowledge Acquisition and Composite Knowledge Expression Mechanism

  • Kim, Jin-Sung
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.447-450
    • /
    • 2003
  • In this research, we propose an automatic knowledge acquisition and composite knowledge expression mechanism based on machine learning and relational database. Most of traditional approaches to develop a knowledge base and inference engine of expert systems were based on IF-THEN rules, AND-OR graph, Semantic networks, and Frame separately. However, there are some limitations such as automatic knowledge acquisition, complicate knowledge expression, expansibility of knowledge base, speed of inference, and hierarchies among rules. To overcome these limitations, many of researchers tried to develop an automatic knowledge acquisition, composite knowledge expression, and fast inference method. As a result, the adaptability of the expert systems was improved rapidly. Nonetheless, they didn't suggest a hybrid and generalized solution to support the entire process of development of expert systems. Our proposed mechanism has five advantages empirically. First, it could extract the specific domain knowledge from incomplete database based on machine learning algorithm. Second, this mechanism could reduce the number of rules efficiently according to the rule extraction mechanism used in machine learning. Third, our proposed mechanism could expand the knowledge base unlimitedly by using relational database. Fourth, the backward inference engine developed in this study, could manipulate the knowledge base stored in relational database rapidly. Therefore, the speed of inference is faster than traditional text -oriented inference mechanism. Fifth, our composite knowledge expression mechanism could reflect the traditional knowledge expression method such as IF-THEN rules, AND-OR graph, and Relationship matrix simultaneously. To validate the inference ability of our system, a real data set was adopted from a clinical diagnosis classifying the dermatology disease.

  • PDF