• Title/Summary/Keyword: Base Fluids

Search Result 183, Processing Time 0.025 seconds

COARSE GRID LARGE-EDDY SIMULATION OF FLOW OVER A HEAVY VEHICLE (화물차 주위 유동의 성긴 격자 큰에디모사)

  • Lee, S.;Kim, M.;You, D.;Kim, J.J.;Lee, S.J.
    • Journal of computational fluids engineering
    • /
    • v.21 no.1
    • /
    • pp.30-35
    • /
    • 2016
  • In order to investigate effects of grid resolution on large-eddy simulation of flow over a heavy vehicle, large-eddy simulations over the vehicle with coarse grid and fine grid are conducted. In addition, comparison of drag coefficients with the experimental data obtained by a wind tunnel experiment is conducted. Both of the drag coefficients of coarse grid and fine grid large-eddy simulation show good agreement with the experimental data. Flow fields obtained by the coarse and the fine grid large-eddy simulation are compared in the vehicle frontal-face region, the vehicle rear wheel region, and the vehicle base region. Coarse grid large-eddy simulation shows good agreement with the fine grid large-eddy simulation in the vehicle front face region and the vehicle rear wheel region, since the flow over the present vehicle is dominated by flow separation which is geometrically pre-determined, not by the skin friction which is known to be sensitive to grid resolution.

An Experimental Study of Transient Hot-wire Sensor Module for Measuring Thermal Diffusivity of Nanofluids (나노유체의 열확산율 측정을 위한 비정상열선법 센서모듈 실험)

  • Lee, Shin-Pyo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.2
    • /
    • pp.113-120
    • /
    • 2011
  • A technique for measuring the thermal diffusivity of nanofluids is proposed in this study. In theory, it has been well known that the transient hot-wire method can be used to measure the thermal conductivity and diffusivity of fluids simultaneously. However, when traditional methods were employed, the accuracy of the calculated thermal conductivity was considerably higher than that of diffusivity. The proposed method has two advantages for practical use: it only needs a simple data-conversion process for calculating the diffusivity, and it can skip the tedious calibration process involved in the case of a wire sensor. A validation experiment for the new system has been performed with the basic fluids, and the comparison experiment to compare the change in diffusivity of the base oil and the change in diffusivity of the nano oil has been carried out. It is expected that the present system will provide numerous methods for investigating the variation in the thermal properties other than thermal conductivity.

A Study on the Relationship Between Length of Time and Contamination in Open Intravenous Solutions (정맥주사용 수액의 개방후 시간경과에 따른 오염도에 관한 실험연구)

  • 김일원
    • Journal of Korean Academy of Nursing
    • /
    • v.16 no.1
    • /
    • pp.67-80
    • /
    • 1986
  • The use of intravenous solutions for fluid replacement has become an integral part of patient care, This widespread use of intravenous solutions has increased the risk of contamination that can lead to septicemia and phlebitis. The literature regarding contamination of in use intravenous solutions recommends a standard 24-hour time limit on the use of these fluids. But the desings of these studies did not incorporate a time variable related to contamination. In other studies, however, time was a manipulated variable: but data regarding the onset of contamination were conflicting. Because published reports conflict with regard to a time standard related to the use of intravenous therapy, additional empirical data are needed upon which to base the standards of care regulating use of intravenous therapy. This study investigated rate of contamination in simulated in-use intravenous solutions to obtain data from which to recomend a standard time period for the administration of intravenous solutions. In this study samples were drawn from 60 bottles of 5% D/W solution at predetermined time intervals over 48 hours and samples were inoculated to Thio-glychollate Broth. After 10 days' culturing in that Broth, samples were cultured on blood agar plates for 18∼48 hours to determine the rate of contamination. was found at all time Period, regardless of the presence or absence of nurse's gloving in the preparation of fluids, the location in which the experimentations were performed, the contamination level of surrounding air, or the length of time during which solutions were opened. Data from this study support the use of a 48-hour time period on which to base the standard involved in ready-to-use simple intravenous solutions without additives. In emergency departments and critical care areas where intravenous solutions are prepared in advance, the suggested time standard supported by the data generated from this study is 48 hours, not 24 hour. Data from this study support a 24-hour time standard for changing in-use intravenous solutions when the contamination results from the manipulation of intravenous infusion system by hospital personnel, or from some other exogenous sources during administration. Because contamination that does occur within 48 hours in intravenous solutions must be introduced from some exogenous sources, further empirical studies based on the identification of sources of contamination and factors that affect the rate of contamination, are needed to investigate the currently employed standard of intravenous therapy and to provide the patient with more efficient and safer intravenous thereapy.

  • PDF

Genetic Environment of the Samsung Gold-Silver Deposit, Republic of Korea: Ore Minerals, Fluid Inclusion and Stable Isotope Studies (삼성 금-은광상의 생성환경: 광석광물, 유체포유물 및 안정동위원소 연구)

  • Yoo, Bong-Chul;Lee, Gill-Jae;Koh, Sang-Mo;You, Byoung-Woon
    • Economic and Environmental Geology
    • /
    • v.43 no.5
    • /
    • pp.443-453
    • /
    • 2010
  • The Samsung gold-silver deposit consists of quartz veins that fill along the fault zone within Cretaceous shale and sandstone. Mineralization is occurred within fault-breccia zones and can be divided into two stages. Stage I is main ore mineralization and stage II is barren. Stage I is associated with wall-rock alteration minerals(sericite, pyrite, chlorite, quartz), rutile, base-metal sulfides(pyrrhotite, pyrite, sphalerite, chalcopyrite, galena), and electrum. Stage II occur quartz, calcite and pyrite. Fluid inclusion data indicate that homogenization temperatures and salinities of stage I range from 145 to $309^{\circ}C$ and from 0.4 to 12.4 wt.% NaCl, respectively. It suggests that hydrothermal fluids were cooled and diluted with the mixing of meteoric water. The main deposition of base-metal sulfides and electrum occurred as a result of cooling and dilution at temperature between $200^{\circ}C$ and $300^{\circ}C$. Sulfur(9.3~10.8‰) isotope composition indicates that ore sulfur was mainly derived from a magmatic source as well as the host rocks. The calculated oxygen[-2.3~0.9‰(quartz: 0.3‰, 0.9‰, calcite: -2.3‰)] and hydrogen[-86~-76‰(quartz: -86‰, -82‰, calcite: -76‰)] isotope compositions indicate that hydrothermal fluids may be meteoric origin with some degree of mixing of another meteoric water for paragenetic time.

Ore Minerals, Fluid Inclusion and Stable Isotope Studies of the Bongsang Gold-silver Deposit, Republic of Korea (봉상 금-은광상의 광석광물, 유체포유물 및 안정동위원소 연구)

  • Yoo, Bong-Chul;Lee, Jong-Kil;Lee, Gil-Jae;Lee, Hyun-Koo
    • Economic and Environmental Geology
    • /
    • v.41 no.1
    • /
    • pp.1-14
    • /
    • 2008
  • The Bongsang gold-silver deposit consists of quartz veins that fill along the fault Bone within Cretaceous andesitic lapilli tuff. Mineralization is occurred within fault-breccia zones and can be divided into two stages. Stage I which can be subdivided into early and late depositional stages is main ore mineralization and stage II is barren. Stage I began with deposition of wall-rock alteration minerals and base-metal sulfides, and was deposited by later native silver, Ag-bearing tetrahedrite, polybasite and base-metal sulfides such like pyrite, sphalerite, chalcopyrite and galena. Fluid inclusion data indicate that homogenization temperatures and salinities of stage I range from 137 to $336^{\circ}C$ and from 0.0 to 10.6 wt.% NaCl, respectively. It suggests that ore forming fluids were cooled and diluted with the mixing of meteoric water. Also, temperature and sulfur fugacity deduced mineral assemblages of late stage I are $<210^{\circ}C\;and\;<10^{-15.4}$ atm, respectively. Sulfur(3.4%o) isotope composition indicates that ore sulfur was mainly derived from a magmatic source as well as the host rocks. The calculated oxygen{2.9%o, 10.3%o(quartz: 7.9%o, 8.9%o, calcite: 2.9%o, 10.3%o)}, hydrogen(-75%o) and carbon(-7.0%o, -5.9%o) isotope compositions indicate that hydrothermal fluids may be meteoric origin with some degree of mixing of another meteoric water for paragenetic time.

Gold and Silver Mineralization of the Soowang Ore Deposits in Muju, Korea (무주 수왕광상의 금-은 광화작용)

  • Park, Hee-In;Youn, Seok-Tai
    • Journal of the Korean earth science society
    • /
    • v.25 no.6
    • /
    • pp.484-494
    • /
    • 2004
  • The Soowang Au-Ag deposits occur as quartz veins which filled fissures in middle Cretaceous porphyritic granite an/or gneiss of the Precambrian Sobaegsan gneiss complex. The paragenetic studies suggest that vein filling can be divided into four identifiable stages (I to IV). Stage I is the main sulfide stage, characterized by the deposition of base-metal sulfide and minor electrum. Stage II is the electrum stage, whereas stage III represents a period of the deposition of silver-bearing sulfosalts and minor electrum. Stage IV is the post ore stage. Mineralogical and fluid inclusion evidences suggest that mineralization of the Soowang deposits were deposited by the cooling of the fluids from initial high temperatures 300$^{\circ}C$ to later low temperatures 150$^{\circ}C$. The salinity of the fluids were moderate, ranging from 10.4wt.% equivalent NaCl in sphalerite to 3.1wt.% equivalent NaCl in barite. The gold-silver mineralization of the Soowang mine occurred at temperatures between 140 and 250$^{\circ}C$ from fluids with log $fs_2$ from -12 to -18 atm. A consideration of the pressure regime during ore deposition, based on the fluid inclusion evidence of boiling, suggests lithostatic pressure of less than 210 bars. This pressure condition indicates that vein system of the Soowang deposit formed at depth around 800 m below the surface at the time of gold-silver mineralization.

Recently Improved Exploration Method for Mineral Discovery (해외광물자원개발을 위한 최적 탐사기법과 동향)

  • Choi, Seon-Gyu;Ahn, Yong-Hwan;Kim, Chang-Seong;Seo, Ji-Eun
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.05a
    • /
    • pp.57-65
    • /
    • 2009
  • Selection of good mineralized area is a combination of the integration of all the available geo-scientific (i.e., geological, geochemical, and geophysical) information, extrapolation of likely features from known mineralized terrenes and the ability to be predictive. The time-space relationships of the hydrothermal deposits in the East Asia are closely related to the changing plate motions. Also, two distinctive hydrothermal systems during Mesozoic occurred in Korea: the Jurassic/Early Cretaceous deep-level ones during the Daebo orogeny and the Late Cretaceous/Tertiary shallow geothermal ones during the Bulguksa event. Both the Mesozoic geothermal system and the mineralization document a close spatial and temporal relationship with syn- to post-tectonic magmatism. The Jurassic mineral deposits were formed at the relatively high temperature and deep-crustal level from the mineralizing fluids characterized by the relatively homogeneous and similar ranges of ${\delta}^{18}O$ values, suggesting that ore-forming fluids were principally derived from spatially associated Jurassic granitoid and related pegmatite. Most of the Jurassic auriferous deposits (ca. 165-145 Ma) show fluid characteristics typical of an orogenic-type gold deposits, and were probably generated in a compressional to transpressional regime caused by an orthogonal to oblique convergence of the Izanagi Plate into the East Asian continental margin. On the other hand, Late Cretaceous ferroalloy, base-metal and precious-metal deposits in the Taebaeksan, Okcheon and Gyeongsang basins occurred as vein, replacement, breccia-pipe, porphyry-style and skarn deposits. Diverse mineralization styles represent a spatial and temporal distinction between the proximal environment of sub-volcanic activity and the distal to transitional condition derived from volcanic environments. However, Cu (-Au) or Fe-Mo-W deposits are proximal to a magmatic source, whereas polymetallic or precious-metal deposits are more distal to transitional. Strike-slip faults and caldera-related fractures together with sub-volcanic activity are associated with major faults reactivated by a northward (oblique) to northwestward (orthogonal) convergence, and have played an important role in the formation of the Cretaceous Au-Ag lode deposits (ca. 110-45 Ma) under a continental arc setting. The temporal and spatial distinctions between the two typical Mesozoic deposit styles in Korea reflect a different thermal episodes (i.e., late orogenic and post-orogenic) and ore-forming fluids related to different depths of emplacement of magma (i.e., plutonic and sub-volcanic) due to regional changes in tectonic settings.

  • PDF

Loci of Orebodies, the Bupyeong Silver Deposits (부평은광상(富平銀鑛床)의 광체배태장소(鑛體胚胎場所))

  • Suh, Kyu-Sik;Park, Hee-In
    • Economic and Environmental Geology
    • /
    • v.20 no.2
    • /
    • pp.97-106
    • /
    • 1987
  • The geology of the Bupyeong mine area is consisted of Precambrian Gyeonggi gneiss complex and Mesozoic igneous rocks; i.e., pyroclastic rocks, intrusive breccia, granite and felsic porphyries which were formed during a Jurassic to early Cretaceous resurgent caldera evolution. Granites are not observed on the surface and in the underground of the mine. Bupyeong silver deposits occur as stockworks of base metal sulfides- minor silver minerals-quartz - carbonate veinlets, hosted by pyroclastic rocks and intrusive breccia at the southwestern margin of the caldera. Silver occurs mainly as native silver, and other silver minerals, minor in quantity, are argentite, tetrahedrite-freibergite, pyrargyrite, polybasite, canfieldite and dyscrasite. The average grade of silver ore is about 180g/t Ag. Discrimination of silver ore from the country rocks depends largely on the chemical analyses of rock samples taken every two meters from tunnels, diamond-drilling cores and mining stopes, because silver minerals are hardly observed in the ore by crude eye, and silver orebodies do not properly coincide with the concentrated zone of base metal sulfides which were precipitated at the earlier stage than the stage of precipitation of native silver. General characteristics of the loci of the silver orebodies are as follows; (1) The host rocks of orebodies are pyroclastic rocks and intrusive breccia. (2) Many of the orebodies are distributed around Gyeonggi gneiss complex. Especially where the paleotopography of gneiss complex shows a gradual slope, the basal stratigraphic horizon of the pyroclastic rocks unconformably overlying the gneiss complex offered a favorable loci of high grade ore. (3) $N5^{\circ}W$ to $N15^{\circ}$ E-striking faults played an important role in the localization of the orebodies. (4) Conduits of intrusive breccia within the gneiss complex, through which the intrusive breccia intruded into the upper pyroclastic rocks, exist beneath most of the main orebodies. This suggests that the conduits of intrusive breccia served as channelways for the migration of ore fluids.

  • PDF

Lubrication Analysis of Parallel Slider Bearing with Nanolubricant (나노윤활유를 사용하는 평행 슬라이더 베어링의 윤활해석)

  • TaeJo Park;JeongGuk Kang
    • Tribology and Lubricants
    • /
    • v.39 no.3
    • /
    • pp.87-93
    • /
    • 2023
  • Nanofluids are dispersions of particles smaller than 100 nm (nanoparticles) in base fluids. They exhibit high thermal conductivity and are mainly applied in cooling applications. Nanolubricants use nanoparticles in base oils as lubricant additives, and have recently started gathering increased attention owing to their potential to improve the tribological and thermal performances of various machinery. Nanolubricants reduce friction and wear, mainly by the action of nanoparticles; however, only a few studies have considered the rheological properties of lubricants. In this study, we adopt a parallel slider bearing model that does not generate geometrical wedge effects, and conduct thermohydrodynamic (THD) analyses to evaluate the effect of higher thermal conductivity and viscosity, which are the main rheological properties of nanolubricants, on the lubrication performances. We use a commercial computational fluid dynamics code, FLUENT, to numerically analyze the continuity, Navier-Stokes, energy equations with temperature-viscosity-density relations, and thermal conductivity and viscosity models of the nanolubricant. The results show the temperature and pressure distributions, load-carrying capacity (LCC), and friction force for three film-temperature boundary conditions (FTBCs). The effects of the higher thermal conductivity and viscosity of the nanolubricant on the LCC and friction force differ significantly, according to the FTBC. The thermal conductivity increases with temperature, improving the cooling performance, reducing LCC, and slightly increasing the friction. The increase in viscosity increases both the LCC and friction. The analysis method in this study can be applied to develop nanolubricants that can improve the tribological and cooling performances of various equipment; however, additional research is required on this topic.

The Origin and Evolution of the Mesozoic Ore-forming Fluids in South Korea: Their Genetic Implications (남한의 중생대 광화유체의 기원과 진화특성: 광상 성인과의 관계)

  • Choi, Seon-Gyu;Pak, Sang-Joon
    • Economic and Environmental Geology
    • /
    • v.40 no.5
    • /
    • pp.517-535
    • /
    • 2007
  • Two distinctive Mesozoic hydrothermal systems occurred in South Korea: the Jurassic/Early Cretaceous(ca. $200{\sim}130$ Ma) deep-level ones during the Daebo orogeny and the Late Cretaceous/Tertiary(ca. $110{\sim}45$ Ma) shallow hydrothermal ones during the Bulgugsa event. The Mesozoic hydrothermal system and the metallic mineralization in the Korean Peninsula document a close spatial and temporal relationship with syn- to post-tectonic magmatism. The calculated ${\delta}^{18}O_{H2O}$ values of the ore-forming fluids from the Mesozoic metallic mineral deposits show limited range for the Jurassic ones but variable range for the Late Cretaceous ones. The orogenic mineral deposits were formed at relatively high temperatures and deep-crustal levels. The mineralizing fluids that were responsible for the formation of theses deposits are characterized by the reasonably homogeneous and similar ranges of ${\delta}^{18}O_{H2O}$ values. This implies that the ore-forming fluids were principally derived from spatially associated Jurassic granitoids and related pegmatite. On the contrary, the Late Cretaceous ferroalloy, base-metal and precious-metal deposits in the Taebaeksan, Okcheon and Gyeongsang basins occurred as vein, replacement, breccia-pipe, porphyry-style and skarn deposits. Diverse mineralization styles represent a spatial and temporal distinction between the proximal environment of subvolcanic activity and the distal to transitional condition derived from volcanic environments. The Cu(-Au) or Fe-Mo-W deposits are proximal to a magmatic source, whereas the polymetallic or the precious-metal deposits are more distal to transitional. On the basis of the overall ${\delta}^{18}O_{H2O}$ values of various ore deposits in these areas, it can be briefed that the ore fluids show very extensive oxygen isotope exchange with country rocks, though the ${\delta}D_{H2O}$ values are relatively homogeneous and similarly restricted.