• Title/Summary/Keyword: Basaltic rock

Search Result 61, Processing Time 0.021 seconds

Dry Weight Singularity Analysis of Rock Specimen Depending on Temperature (온도에 따른 암석시편의 건조무게 특이점 분석)

  • Sukjoo Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.9
    • /
    • pp.25-32
    • /
    • 2023
  • The Korean Industrial Standards (KS F) have a various regulations for measuring the weight of dried soil and rock. However, if the dried weight is measured in air after drying at 110±5℃ or 105±5℃, a weight singularity occurs, in which the weight decreases and then increases as the measurement time continues. In this study, basaltic rock from Ulleung Island was oven dried at 40 to 110℃. The weight was measured on an electronic scale with a sensitivity of 0.0001g (0.1mg) to find weight singularities. A method to easily determine the dry weight using the weight singularities was presented. As a result of analyses of the singularity of rock specimen according to temperature, the singularities were appeared in the temperature range of 40 to 110℃, and the weight of the singularity was smaller as the heating temperature increased. In particular, the weight singularity duration appeared, and the duration of the singularity was shorter as the heating temperature increased. The results of the convection measurement experiment showed that the cause of the singularity is the convection phenomenon caused by the contact of the heated rock with the air. The weight decrease of oven dried rock occurs when the effect of convection is dominant over the effect of air moisture absorption. Conversely, the weight increase of rock occurs when the effect of air moisture absorption is dominant over the effect of convection.

40Ar-39Ar Age Determination for the Quaternary Basaltic Rocks in Jeongok Area (전곡 지역 제4기 현무암질 암석의 40Ar-39Ar 연대 측정)

  • Kim, Jeongmin;Choi, Jeong-Heon;Jeon, Su In;Park, Ul Jae;Nam, Seong Soo
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.385-391
    • /
    • 2014
  • Quaternary basaltic rocks occur as volcanic plateau and/or river cliff in the watershed area of Hantan River in Jeongok, central Korea. We measured $^{40}Ar-^{39}Ar$ ages for the basaltic rocks from Jeongok area using the multi-collector noble gas mass spectrometer and laser heating device introduced for the first time in Korea. The basaltic rocks from the river cliff in Eundae-ri area show the systematic change in $^{40}Ar-^{39}Ar$ ages from $0.54{\pm}0.07Ma$ through $0.48{\pm}0.01Ma$ to $0.12{\pm}0.01Ma$ toward the top. The other sample from Jeongok-ri area yields the age of $0.43{\pm}0.04Ma$. This results suggest that there might be a episodic volcanic eruption between 0.12-0.54 Ma in Jeongok area.

Fe-rich Sepiolite from the Basalt Fault Gouge in the South of Pohang, Korea (포항시 남부 현무암체의 단층점토에서 산출되는 Fe-세피올라이트)

  • Son, Byeongseo;Hwang, Jinyeon;Lee, Jinhyun;Oh, Jiho;Son, Moon;Kim, Kwanghee
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.1
    • /
    • pp.11-22
    • /
    • 2016
  • The black fault gouge having 5-10 cm width occurs at the center of the fault fracture zone developed at the early Miocene basaltic rocks that is located at the Geumkwang-ri area in Donghae-myeon, Pohang city. The fault gouge was analyzed with XRD, FTIR, DTA/TGA, SEM, TEM, XRF, EPMA. Analyses reveal that the fault gouge is Fe-rich sepiolite having high iron content. Alteration minerals observed in the fault fracture zone are mainly smectite. The significant amount of smectite also observed in the basaltic parent rocks. The occurrence of constituent minerals indicates that the Fe-rich sepiolite was crystallized by faulting and hydrothermal alteration after the consolidation of basaltic rock at the deep place.

다중 환경추적자를 이용한 제주도 지하수 유동 및 수질 특성 분석

  • 고동찬;김용재
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.138-141
    • /
    • 2004
  • The environmental tracers tritium/helium-3 (3H/3He) and chlorofluorocarbons (CFCs) were investigated in ground water from Jeju Island, Korea, a basaltic volcanic island. The apparent 3H/3He and CFC-12 ages were in relatively good agreement in samples with low concentrations of terrigenic He. Ground water mixing was evaluated by comparing 3H and CFC-12 concentrations with mixing models, which distinguished old water with negligible 3H and CFC-12, young water with piston flow, and binary mixtures of the two end members. The ground water CFC-12 age is much older in water from wells completed in confined zones of the hydro-volcanic Seoguipo formation in coastal areas than in water from the basaltic aquifer. Comparison of major element concentrations in ground water with the CFC-12 age shows that nitrate contamination processes contribute more solutes in young water than are derived from water-rock interactions in non-contaminated old water. Chemical evolution of ground water resulting from silicate weathering in basaltic rocks reaches the zeolite-smectite phase boundary. The calcite saturation state of ground water increased with the CFC-12 apparent (piston flow) age. In agricultural areas, the temporal trend of nitrate concentration in ground water was consistent with the known history of chemical fertilizer use on Jeju Island, but the response of nitrate concentration in ground water to nitrogen inputs follows an approximate 10-year delay. Based on mass balance calculations, it was estimated that about 40% of the nitrogen applied by fertilizers reached the water table and contaminated ground water resources when the fertilizer use was at the highest level.

  • PDF

Mineralogical Characteristics of Tachylite occurring in Basic Dike, Basaltic Agglomerate Formation, Ulleung Island and Its Implications of Volcanic Activity (울릉도의 하부층 현무암질 집괴암 층내 염기성 암맥에서 산출되는 타킬라이트의 광물학적 특성과 화산학적 의미)

  • Bae, Su-Gyeong;Choo, Chang-Oh;Jang, Yun-Deuk
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.63-76
    • /
    • 2012
  • Tachylite, black basaltic glass formed by the rapid cooling of molten basalt, locally occurs at the Basaltic Agglomerate Formation (BAF), the lowest formation of Ulleung Island. The purposes of this study are to characterize the occurrence and mineralogy of tachylite and to elucidate its formation condition, with emphasis on its fracture pattern, which can serve as implications for the early volcanic activity of Ulleung Island. To this end, we investigated the occurrence pattern of tachylite in the field and carried out mineralogical analyses using optical microscope, XRD, EPMA, and SEM. Tachylite occurs at the chilled margin of basic dikes which are distributed in Naesujeon, Dodong and Jeodong seasides, Turtle Rock, and Yaerimwon, whose widths vary from several cm to 10 cm. It is evident that the outer surface of tachylite is dense and smooth, whereas the inner surface, if fractured, is characterized by conchoidal fracture. The matrix of tachylite consists of amorphous, glass and some fine-grained phenocrysts present in tachylite include biotite, anorthoclase, sanidine, plagioclase, hornblende, and Fe-Ti oxides. The fracture patterns characteristic of tachylite are subrounded, oval, or less commonly polygonal, bounded by joints to form globule or lump. Taking into account texture and mineralogy, tachylite is interpreted to have undergone little subsequent alteration at low temperature via hydration or hydrolysis that could form clay minerals after it was formed. Because tachylite with peculiar fractures occurs as dikes in a close association with BAF, its presence is considered as reliable evidence that when tachylite formed, the most part of BAF was still under subaqueous conditions, or at least saturated with seawater.

A Study on Slope Stability Analysis of Sedimentary Rock using Interfaces Module of FLAC (FLAC의 Interfaces Module을 이용한 퇴적암 사면의 안정성 해석에 관한 연구)

  • 오대열;정교철
    • The Journal of Engineering Geology
    • /
    • v.12 no.3
    • /
    • pp.345-360
    • /
    • 2002
  • This study was for analysing the sedimentary rock slope stability and providing the reinforcement method that can heighten stability. The study area consists of Cretaceous basalt or basaltic tuff belonging to Hak-Bong Basalt Formation in Ha-Yang Group. Nature of geological structure confirmed in this area ars bedding, joint and fault. Majority of geological structure that affect most relationship rock slope stability is bedding. It is shown that dip direction is 120~160/15~25. In other structure, joint sets are shown that dip direction of set 1 is 310~330/65~85 and set 2 is 230~250/70~85. Joint set 3 shows above 85$^{\circ}$ high angle on NE trend although do not show clear. Stability analysis about rock slope used kinematic analysis, limit equilibrium method and FLAC by numerical analysis method. FLAC is continuum model that use Fintie Defferentce Method, but could use Interfaces Module and get discrete model's analysis effect such as UDEC.

Artificial Accelerated Weathering of Volcanic Rocks from Ulleungdo Island (인공풍화가속실험을 통한 울릉도에 분포하는 화산암의 풍화특성 고찰)

  • Woo, Ik
    • The Journal of Engineering Geology
    • /
    • v.25 no.4
    • /
    • pp.499-510
    • /
    • 2015
  • Artificial accelerated weathering test evaluated rocks from near the circuit road of Ulleungdo island, approximately 120 km from east of the Korean Peninsula. The tests subjected rock specimens to conditions based on the climate of the island. The specimens (such as basaltic breccia, trachyte, volcanic breccia) were preliminarily classified using a TAS diagram (XRF data) and based on the constituent minerals (XRD data); they were further classified by weathering degree according to their absorption ratios. During the artificial accelerated weathering, the absorption ratio of most of the specimens increased, but the point-load strength did not decrease in most cases, except for the volcanic breccia. The greater initial absorption ratio of trachyte rock specimen in comparison with the other specimens led to a greater increase of its absorption ratio during the artificial accelerated weathering test. The volcanic breccia specimens showed the greatest increase of absorption ratio and the biggest reduction ratio of the point- load strength during the tests. These results could aid prediction of the weathering rate of rocks in Ulleungdo island subjected to weathering processes; trachyte which appears to accelerate with time, and volcanic breccia whose mechanical strength can largely decrease in a relative short period of time. Proper measures therefore appear necessary for the prevention of natural disaster such as rock fall and landslide around the circuit road.

Variation of Chemical Composition and Relative Movement of Major Elements on the Weathering of Hwang-Dung Granite (황등화강암(黃登花崗岩)의 풍화(風化)에 따른 화학조성(化學組成)의 변화(變化)와 주요원소(主要元素)의 상대적(相對的) 이동(移動))

  • Nam, Ki Sang
    • Economic and Environmental Geology
    • /
    • v.6 no.2
    • /
    • pp.115-122
    • /
    • 1973
  • The writer intended to observe the relative mobility of elements in weathering process of granite, on the outskirts of IRI city at Jeollabukdo KOREA. He analysed fresh granites and weathered ones of Hwang-Dung granite mass and had following conclusions by the triangular diagrams and the oxidized variation diagrams of the analysis. 1) The increasing phenomena of $H_2O$ observed clearly in early and late stage of weathering processes. 2) Granites was weathered by physical weathering in early stage, and it was weathered by chemical weathering in late stage. 3) The ratio of $FeO/Fe_2O_3$, FeO/MgO, and $SiO_2/Al_2O_3$ decreased uniformly from early to late stage of weathering processes. 4) It was proved that weathering potential of granite was larger than that of basaltic rock. 5) The order of mobility in major elements was Ca, Na, K>Si>Mg>Fe, Al.

  • PDF

The Study on Geology and Volcanism in Jeju Island (I): Petrochemistry and $^{40}Ar/^{39}Ar$ Absolute ages of the Subsurface Volcanic Rock Cores from Boreholes in the Eastern Lowland of Jeiu Island (제주도의 지질과 화산활동에 관한 연구 (I): 동부지역 저지대 시추코어 화산암류의 암석화학 및 $^{40}Ar/^{39}Ar$ 절대연대)

  • Koh, Gi-Won;Park, Jun-Beom;Park, Yoon-Suk
    • Economic and Environmental Geology
    • /
    • v.41 no.1
    • /
    • pp.93-113
    • /
    • 2008
  • This study presents petrochemistry and $^{40}Ar/^{39}Ar$ absolute ages of subsurface volcanic rock cores from twenty(20) boreholes in the eastern lowland (altitude loom below) of Jeju Island, Handeong-Jongdal-Udo-Susan-Samdal-Hacheon areas, and discusses topography and volcanism in the area. The subsurface volcanic rock cores are mainly basalts in composition with minor tholeiitic andesites and basaltic trachyandesites. Sequences of intercalated tholeiitic, transitional and alkalic lavas suggest that tholeiitic and transitional to alkalic lavas must have erupted contemporaneously. Especially, occurrences of trachybasalts and basaltic trachyandesites at the bases in the area imply that the volcanism in the area was initiated with slightly differentiated alkaline magma activity. The $^{40}Ar/^{39}Ar$ absolute ages of the subsurface volcanic rock cores range from $526{\pm}23ka\;to\;38{\pm}4Ka$. The lava-forming Hawaiian volcanic activities of the eastern lowland can be divided into five sequences on the basis of sediment distribution, whole rock geochemistry and $^{40}Ar/^{39}Ar$ absolute ages of the subsurface volcanic rock cores; stage I-U$(550{\sim}400Ka)$, stage II$(400{\sim}300Ka)$ and stage III$(300{\sim}200Ka)$ during syn-depositional stage of Seoguipo Formation, and stage IV$(200{\sim}100Ka)$ and stage V(younger than 100Ka) during post-depositional stage. In the eastern lowland of Jeju Island, compositional variations and local occurrences of the subsurface volcanic rocks as well as existences of various intercalated sediment layers (including hydrovolcanogenic clasts) suggest that the volcanism must have continued for long time intermittently and that the land has been progressively glowed from inland to coast by volcanic activities and sedimentation. It reveals that the subsurface volcanic rocks in the eastern lowland of Jeju Island must have erupted during relatively younger than 200Ka of stages IV and V. The results of this study are partly in contrast with those of previous studies. This study stresses the need that previous reported volcanic activities in Jeju Island based on K-Ar ages of volcanic rocks should be carefully reviewed, and that stratigraphic correlation from boreholes should be conducted by quantitative criteria combined with petrography and petrochemstry as well as radiometric studies of volcanic rock cores.

Distribution and Petrology of the Columnar Joint in South Korea (남한에서 주상절리의 분포와 암석학적 특성)

  • Ahn, Kun Sang
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.45-59
    • /
    • 2014
  • This study has been designed to collate distribution, morphology, petrology of columnar joint in South Korea. Reported columnar joint areas in South Korea are 68, until the present time. These can be divided into five group by geography and volcanic activity. 1) The 16 columnar joint areas are distributed in Hantangang region. The 15 areas in this region are composed of basaltic lava in the Quaternary period, and the other 1 area is composed of volcanic rocks in the Cretaceous period. 2) The 18 columnar joint areas are distributed in Jeju island. Most of them are composed of basaltic lava(alkali basalt and Hawaiite), and the Sanbangsan and Baegrokdam area are composed of trachyte in the Quaternary period. Colonnade, entablature and chisel mark of the columnar joint are typically occur in basaltic lava. 3) The 5 columnar joint areas are distributed into the Ulleung island and Dokdo including Guksubawi. These are consisted of relatively well-formed trachyte columns in the Quaternary period. 4) The 8 columnar joint areas are distributed into the Pohang, Gyeongju and Ulsan region and consist of the Tertiary period volcanic rock. It's shape are dome, radial, horizontal and vertical. The 4 columnar joint areas are reported in the Pyeongtaek and Asan city of Chungcheongnamdo and Gosung of Gangwondo. All of them are the Tertiary period basalt. 5) The 15 columnar joint areas are distributed into the west and south coast region. Those are consisted of various rock type(from basalt to dacite), various occurrences(lava flow to welded tuff), and various diameters(20 cm to several meters). The columnar joint of Mudeung mountain and Juwang mountain are welded tuff in the Cretaceous period. The columnar joint is distributed over a wide area in South Korea, 5 in Gangwondo, 13 in Gyeonggido, 2 in Chungnam, 14 in Gyeongbuk, 1 in Jeonbuk, 10 in Jeonnam, 5 in Gyeongnam, and 18 in Jeju. The columnar joints in South Korea can be arranged in order of formative period, 18 in the Cretaceous period, 12 in the Tertiary period, and 38 in the Quaternary period. By magma series, 36 are belong to alkaline series and 32 are belong to sub-alkaline series.