• Title/Summary/Keyword: Basaltic rock

Search Result 62, Processing Time 0.028 seconds

Estimation of Deformation Modulus of Basaltic Rock Masses in Northeastern and Northwestern Jeju Island (제주도 북동부 및 북서부 현무암반의 변형계수 추정)

  • Yang, Soon-Bo;Boo, Sang-Pil
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.1
    • /
    • pp.5-15
    • /
    • 2019
  • In this study, the in situ deformation moduli, which were measured by borehole loading tests at basaltic rock masses located in the northeastern onshore and offshore and the northwestern onshore of Jeju Island, were examined in relation to RQD and RMR. The measured deformation moduli were also compared with the estimated deformation moduli from conventional empirical formulas using RQD and RMR. In addition, the measured deformation moduli were analyzed with respect to both the velocity ratio ($V_P/V_S$) and dynamic Poisson's ratio, which were obtained from the elastic wave velocities measured by velocity logging tests. As results, with only RQD, it was inappropriate to evaluate the quality of the Jeju island basaltic rock masses, which are characterized by vesicular structures, to select a measurement method of in situ deformation moduli, and to estimate the deformation moduli. On the other hand, it was desirable to evaluate the quality of the Jeju Island basaltic rock masses, and to estimate the deformation moduli by using RMR. The conventional empirical formulas using RMR overestimated the deformation moduli of the Jeju Island basaltic rock masses. There was qualitative consistency in the relation between velocity ratio and deformation moduli. To estimate appropriately the deformation moduli of the Jeju Island basaltic rock masses, empirical formulas were proposed as the function of RMR and velocity ratio, respectively.

Diversity of the Cretaceous basaltic volcanics in Gyeongsang Basin, Korea (경상분지내 백악기 현무암질 화산암류의 다양성)

  • 김상욱;황상구;이윤종;고인석
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.1
    • /
    • pp.1-12
    • /
    • 2000
  • The Cretaceous basaltic rocks in Gyeongsang Basin are temporally and spatially dispersed widely in thick sedimentary piles: Chilgog basaltic rock (CGB) and Cheongyongsa basaltic rock (CSB) in the Shindong Group, and Hakbong basaltic rocks (HBB), Osibbong basalt (OSB), Secheondong basaltic rocks (SCB), Haman basaltic rocks (HAB), Hama basaltic rocks (HMB), and Chaeyaksan basaltic rocks (CYB) in the Hayang Group, upwardly in their stratigraphy. Chilgog basaltic rock is merely identified as pebbles in the Shilla Conglomerate and its provenance has not been found, and it is characteristics that the volcanics except Osibbong basalt and Chaeyaksan basaltic rocks are very small in both of their thickness and extension. Petrochemical diversity of the basaltic rocks are revealed; OSB and SCB distributed in the Yeongyang Minor Basin preserve the calc-alkaline natures in major and immobile minor element geochemistry, but CGB, HBB, HAB, and CYB reflect that they might be originated from calc-alkaline basaltic magma of volcanic arc in continental margin area by trace elements and altered to alkaline suites in the viewpoint of their major element geochemistry. Major and trace element geochemistry of CSB and HMB suggests that they may be derived from within -plate alkaline magma contaminated by the upper continental crust, especially in the case of the former.

  • PDF

Modulus of elasticity of concretes produced with basaltic aggregate

  • Maia, Lino;Aslani, Farhad
    • Computers and Concrete
    • /
    • v.17 no.1
    • /
    • pp.129-140
    • /
    • 2016
  • Basalt is a type of volcanic rocks, grey to black in colour, contains less than 20% quartz, 10% feldspathoid, and at least 65% of the feldspar of its volume. Basalt is considered an igneous rock with fine grains due to the rapid cooling of lava. Basaltic rocks have been widely used as aggregate for various purposes. The study presented in this paper was carried out on basalts that are widespread in the Madeira Island of Portugal and that comprise the major source of local crushed rock aggregates. This paper discusses an experimental programme that was carried out to study the effects of basaltic aggregate on the compressive strength and modulus of elasticity of concrete. For this purpose, cylinder specimens with $150{\times}300mm$ dimensions and prism specimens with $150{\times}150{\times}375mm$ dimensions were cast. The experimental programme was carried out with several concrete compositions belonging to strength classes C20/25, C25/30, C30/37, C40/50 and C60/75. The Eurocode 2 indicates the modulus of elasticity should be 20% higher when the aggregates are of basaltic origin, however results showed significant differences and a correction is proposed.

A Study on the Material Characteristics of Stone Tools Excavated from the Remain Point of Paleolithic Age in Osong Site, Cheongju

  • Kim, Jae Hwan;Han, Min Su
    • Journal of Conservation Science
    • /
    • v.35 no.1
    • /
    • pp.41-49
    • /
    • 2019
  • This study analyzes the material characteristics of stone tools of the Paleolithic period excavated from the Osong site, located at the project site for the creation of the Osong 2nd Life Science Complex, and estimates the provenance of the stone materials. Because the stones had been buried for a long time, their surfaces had become heavily weathered yellow or yellowish-brown, and the magnetic susceptibility values varied from 0 to 15(${\times}10^{-3}SI$). The excavated stone tools were rocks with various magnetic susceptibility values that could not be specified. Five stone tools subjected to destructive analysis were divided into two groups, one with a value of 1-3(${\times}10^{-3}SI$) and the other with a value of 5-9(${\times}10^{-3}SI$), both based on visible characteristics. The results of the thin-section analysis showed that most of the stone tools were basaltic rocks comprising plagioclase, quartz, and pyroxene, and some had iron content as high as 20 wt.%. These findings and the present geological map suggest that the stone tools were not made from the surrounding rocks because there are no areas containing basaltic rocks surrounding Bongsan-ri in Osong-eup. Andesite and tuff are distributed along with basaltic rocks in the Doan-myeon area in Jeongpyeong-gun, Chungcheongbuk-do Province, but the distance from the excavation site is too far. To determine whether this region is actually related to the provenance of the raw rock, it is necessary to conduct additional field surveys and comprehensive and precise analyses.

Analysis of Geological Structure of Volcanic Rock Mass in Ulleung-do using Variations of Magnetic Anomaly (자력탐사 자기이상 분석을 활용한 울릉도 화산암체 지질구조 특성 해석)

  • Kim, Ki-Beom;Kim, Man-Il
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.619-630
    • /
    • 2018
  • The purpose of this study is to investigate the existence of faults and intrusive rocks in the volcanic rock mass of Ulleung-do using magnetic anomalies. The magnetic survey data show that basaltic (mafic) rocks have high magnetic anomalies and that trachytic (felsic) rocks have low magnetic anomalies, implying that the anomaly distributions can be used to distinguish between different volcanic rock types that may be covered by regolith (such as alluvial and colluvial deposits) and other sedimentary layers. Our results show that basaltic rocks are not present within the Nari caldera. However, outside the caldera, the occurrence of high magnetic anomaly values of >$1,000{\gamma}$ is presumed to reflect the existence of basaltic craters or volcanic vents that formed prior to the eruption of the trachytic rocks. In particular, the area with anomaly values of >$1,000{\gamma}$ in the vicinity of Namyang-ri, southwest of Ulleung-do, is interpreted as having a high probability of hosting a crater and vent originating from mafic volcanism.

Relative Movement of Major Elements on the Weathering of Rocks (암석의 풍화에 따르는 주요성분의 상대적 이동)

  • Nam, Ki-Sang;Cho, Kyu-Seong
    • Economic and Environmental Geology
    • /
    • v.26 no.1
    • /
    • pp.67-81
    • /
    • 1993
  • This dissertation is a basic research on the degradation of rocks and aims at clarifying the relations between the progression of degree of weathering and the variation of chemical composition. The author wants to make clear the degradation of rocks and the process of formation of sedimentary rocks from a standpoint of elucidation of migration of elements. This study is considered to be significant not only as a part of research on the distribution of earth crust materials but as the petrogenesis of rocks. The chemical studies on the weathered rocks have been started relatively early and there are not a few researches on them: Goldich, 1938; Harris, et al., 1966; Ruxton, 1968; Berner, et al., 1982; Kanuss, 1983; Lasaga, 1984; Siagel, 1984. The degree of migration of elements in weathering is the composite result of various factors. Because, at the present time, it is difficult to clarify the individual and composite effects of each factor theoretically and quanititatively, we must accumulate empirical data and use them relatively. In such consideration the author acquired some data of chemical weathering from the chemical analysis of granitic and basaltic rocks in and around Fukuoka city, Japan and granitic rocks in and around Chonju and Iri cities, Korea. Because both rock types studied can be considered as representative materials of acidic and basic rocks compsing the earth crust, it is significant to examine the phenomena of weathering of both rock types. The following results are obtained from the analysis and examinations of chemical compositions of the original and weathered rocks. The loss rate of major elements has no uniformity, but the following relation holds in general; Ca, Na> K, Si> Mg> Fe, Al. As weathering proceeds, the ratio of $Al_2O_3/CaO$ shows increasing phenomena, and that of $Na_2O/CaO$ decreasing. The range of migration of composition is broad in basaltic rocks but narrow in granitic rocks. The reason is that the chemical weathering of basaltic rocks progresses more easily than that of granitic rocks. The chemical weathering potenitial index of basaltic rocks in larger than that of granitic rocks. The reason is that the chemical weathering of basaltic rocks proceeds more easily than that of granitic rocks. In weathering, the decrease of mobile cations such as $Ca^{2+}$, $Na^{2+}$, $Mg^{2+}$ and the increase of $H_2O$ in basaltic rocks are more obvious than in granitic rocks.

  • PDF

Petrology of the Cretaceous Volcanic Rocks in the Gyemyeong peak and Janggun peak area, Mt. Geumjeung, Busan (부산 금정산의 계명봉과 장군봉 일대 백악기 화산암류에 관한 암석학적 연구)

  • Kim, Hye-Sook;Kim, Jin-Seop;Moon, Ki-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.1-17
    • /
    • 2009
  • This article carried studies of the petrographical and petrochemical characteristics on the Cretaceous volcanic rocks in the area of Janggun peak and Gyemyeong peak which is located at the northeastern area of Mt. Geumjeong, Busan. The areas are composed of andesitic rock, sedimentary rock, rhyolitic rock, and intrusive hornblende, biotite granites, in ascending order. According to petrochemistry, the major elements show the calc-alkaline rock series ranged medium-K to high-K. With increasing $SiO_2$, $Al_{2}O_{3}$, $Fe_{2}O_{3}$, $TiO_2$ CaO, MgO MnO and $P_{2}O_{5}$ are decreased and $K_{2}O$ and $Na_{2}O$ are increased in the volcanic rocks. The trace element compositions show high LILE/HFSE ratios and negative anomaly of Nb, and REE patterns show enrichments in LREE and (-) anomaly values increase of Eu from the basaltic andesite to andesite facies, therefore the volcanic rocks have typical characteristics of continental margin arc calc-alkaline volcanic rocks, produced in the subduction environment. The volcanic rock show nearly the same patterns in spider and REE diagram. Fractional crystallization of the basaltic magma would have produced the calc-alkaline andesitic magma. And the rhyolitic magma seems to have been evolved from the basaltic andesitic magma with fractional crystallization of plagioclase, pyroxene, hornblende, biotite.

Petrology of the Cretaceous volcanic rocks in northern Yucheon Minor Basin, Korea (북부 유천소분지에 분포하는 백악기 화산암류에 대한 암석학적 연구)

  • Sang Wook Kim;Sang Koo Hwang;Yoon Jong Lee;Jae Young Lee;In Seok Koh
    • The Journal of the Petrological Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.27-36
    • /
    • 1998
  • The volcanic piles in the northern Yucheon Minor Basin area are the Hagbong basaltic rocks, the Chaeyaksan basaltic rocks, the Jusasan andesitic rocks, the Unmunsa rhyolitic rocks, and the Tertiary voicanics. Stratigraphically, from the lowermost, (1) the Hagbong basaltic rocks are composed mainly of basaltic tuff with two olivine basalt flows intercalated, (2) the Chaeyagsan basaltic rocks are predominantly in tuffs and agglomerate with 3 basaltic flow interlayers, (3) the Jusasan andesitic rocks consist of thick piles of alternated sequences of 4 andesite flows and 5 andesitic tuffs and tuffaceous sediments and (4) the Unmunsa rhyolitic rocks which embed some rhyolite and obsidian are dominant in tuffs such as ash flow and crystal welded tuff. These volcanics reveal distinguishable characteristics in petrochemistry. In discriminating by major elements, the Hagbong and the Chaeyagsan basaltic rocks are alkaline, whereas the latter is also spilitic. In comparison, the volcanic rocks of the Jusasan andesitic rocks and the Tertiary sequences are characteristically calc-alkaline although their distribution is spatially separated. On the other hand, the variations in immobile trace elements indicate that the Hagbong basaltic rocks range from alkaline to calc-alkaline and from WPB/VAB transition to VAB, whereas the Chaeyagsan basaltic rocks are calc-alkaline WPB/VAB transition type and the two others calc-alkaline VAB. In order to show such a variety in their rock series of the volcanic rocks, the environment during their magma generation, magma rising, and post-eruption alteration could be positively considered.

  • PDF

Basaltic Andesite-Siltstone Peperite in the Gyehwari Formation (Cretaceous) (백악기 계화리층 내 현무암질 안산암-실트암 페퍼라이트)

  • Noh, Beyong-Seob;Park, Jae-Moon;Kim, Seung-Bum;Ryang, Woo-Hun
    • Journal of the Korean earth science society
    • /
    • v.30 no.1
    • /
    • pp.33-39
    • /
    • 2009
  • This paper presents the occurrence and characteristics of the basaltic andesite-siltstone peperite in the lower part of the Gyehwari Formation (Cretaceous), Buan-gun, Jeonbuk province, SW Korea. The peperite is associated with tabular basaltic andesite body, concordantly intercalated with red siltstone and silty sandstone interbeds of floodplain facies. Development of the peperite along the upper margin of the andesite and its textural transition from a dispersed blocky type inward into a closely packed type collectively indicate an intrusive origin (?sill) of the andesite. Magma intrusion and subsequent peperite formation suggest an active syndepositional volcanism since the early stage of evolution of the Gyehwa Basin. The andesite is dated at Late Cretaceous (Santonian) by K-Ar whole-rock radiometric method.

Evaluating the Effectiveness of an Artificial Intelligence Model for Classification of Basic Volcanic Rocks Based on Polarized Microscope Image (편광현미경 이미지 기반 염기성 화산암 분류를 위한 인공지능 모델의 효용성 평가)

  • Sim, Ho;Jung, Wonwoo;Hong, Seongsik;Seo, Jaewon;Park, Changyun;Song, Yungoo
    • Economic and Environmental Geology
    • /
    • v.55 no.3
    • /
    • pp.309-316
    • /
    • 2022
  • In order to minimize the human and time consumption required for rock classification, research on rock classification using artificial intelligence (AI) has recently developed. In this study, basic volcanic rocks were subdivided by using polarizing microscope thin section images. A convolutional neural network (CNN) model based on Tensorflow and Keras libraries was self-producted for rock classification. A total of 720 images of olivine basalt, basaltic andesite, olivine tholeiite, trachytic olivine basalt reference specimens were mounted with open nicol, cross nicol, and adding gypsum plates, and trained at the training : test = 7 : 3 ratio. As a result of machine learning, the classification accuracy was over 80-90%. When we confirmed the classification accuracy of each AI model, it is expected that the rock classification method of this model will not be much different from the rock classification process of a geologist. Furthermore, if not only this model but also models that subdivide more diverse rock types are produced and integrated, the AI model that satisfies both the speed of data classification and the accessibility of non-experts can be developed, thereby providing a new framework for basic petrology research.