• Title/Summary/Keyword: Basal cortical concentration

Search Result 5, Processing Time 0.017 seconds

Effects of Dexamethasone and DHEA on the Responses of Rat Cerebral Cortical Astrocytes to Lipopolysaccharide and Antimycin A

  • Choi, Sang-Hyun;Kim, Hyung-Gun;Kim, Chang-Keun;Park, Nan-Hyang;Choi, Dong-Hee;Shim, In-Sop;Chun, Boe-Gwun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.2
    • /
    • pp.127-135
    • /
    • 1999
  • As part of a study on the effects of dexamethasone and dehydroepiandrosterone (DHEA) on the biological roles of astrocytes in brain injury, this study evaluated the effects of dexamethasone and DHEA on the responses of primary cultured rat cortical astrocytes to lipopolysaccharide (LPS) and antimycin A. Dexamethasone decreased spontaneous release of LDH from astrocytes, and the dexamethasone effect was inhibited by DHEA. However, the inhibitory effect of DHEA on the dexamethasone-induced decrease of LDH release was not shown in astrocytes treated with LPS, and antimycin A-induced LDH release was not affected by dexamethasone or DHEA. Unlike dexamethasone, DHEA increased MTT value of astrocytes and also attenuated the antimycin A-induced decrease of MTT value. Glutamine synthetase activity of astrocytes was not affected by DHEA or LPS but increased by dexamethasone, and the dexamethasone- dependent increase was attenuated by DHEA. However, antimycin A markedly decreased glutamine synthetase activity, and the antimycin A effect was not affected by dexamethasone or DHEA. Basal release of $[^3H]arachidonic$ acid from astrocytes was moderately increased by LPS and markedly by antimycin A. Dexamethasone inhibited the basal and LPS-dependent releases of $[^3H]arachidonic$ acid, but neither dexamethasone nor DHEA affected antimycin A-induced $[^3H]arachidonic$ acid release. Basal IL-6 release from astrocytes was not affected by dexamethasone or DHEA but markedly increased by LPS and antimycin A. LPS-induced IL-6 release was attenuated by dexamethasone but was little affected by DHEA, and antimycin A-induced IL-6 release was attenuated by DHEA as well as dexamethasone. At the concentration of dexamethasone and DHEA which does not affect basal NO release from astrocytes, they moderately inhibited LPS-induced NO release but little affected antimycin A-induced decrease of NO release. Taken together, these results suggest that dexamethasone and DHEA, in somewhat different manners, modulate the astrocyte reactivity in brain injuries inhibitorily.

  • PDF

Nobiletin attenuates neurotoxic mitochondrial calcium overload through K+ influx and ∆Ψm across mitochondrial inner membrane

  • Lee, Ji Hyung;Amarsanaa, Khulan;Wu, Jinji;Jeon, Sang-Chan;Cui, Yanji;Jung, Sung-Cherl;Park, Deok-Bae;Kim, Se-Jae;Han, Sang-Heon;Kim, Hyun-Wook;Rhyu, Im Joo;Eun, Su-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.3
    • /
    • pp.311-319
    • /
    • 2018
  • Mitochondrial calcium overload is a crucial event in determining the fate of neuronal cell survival and death, implicated in pathogenesis of neurodegenerative diseases. One of the driving forces of calcium influx into mitochondria is mitochondria membrane potential (${\Delta}{\psi}_m$). Therefore, pharmacological manipulation of ${\Delta}{\psi}_m$ can be a promising strategy to prevent neuronal cell death against brain insults. Based on these issues, we investigated here whether nobiletin, a Citrus polymethoxylated flavone, prevents neurotoxic neuronal calcium overload and cell death via regulating basal ${\Delta}{\psi}_m$ against neuronal insult in primary cortical neurons and pure brain mitochondria isolated from rat cortices. Results demonstrated that nobiletin treatment significantly increased cell viability against glutamate toxicity ($100{\mu}M$, 20 min) in primary cortical neurons. Real-time imaging-based fluorometry data reveal that nobiletin evokes partial mitochondrial depolarization in these neurons. Nobiletin markedly attenuated mitochondrial calcium overload and reactive oxygen species (ROS) generation in glutamate ($100{\mu}M$)-stimulated cortical neurons and isolated pure mitochondria exposed to high concentration of $Ca^{2+}$ ($5{\mu}M$). Nobiletin-induced partial mitochondrial depolarization in intact neurons was confirmed in isolated brain mitochondria using a fluorescence microplate reader. Nobiletin effects on basal ${\Delta}{\psi}_m$ were completely abolished in $K^+-free$ medium on pure isolated mitochondria. Taken together, results demonstrate that $K^+$ influx into mitochondria is critically involved in partial mitochondrial depolarization-related neuroprotective effect of nobiletin. Nobiletin-induced mitochondrial $K^+$ influx is probably mediated, at least in part, by activation of mitochondrial $K^+$ channels. However, further detailed studies should be conducted to determine exact molecular targets of nobiletin in mitochondria.

Hydrogen Sulfide Poisoning (황화수소 중독 증례)

  • Choi, Young-Hee;Nam, Byung-Kuk;Kim, Hyo-Kyung;Park, Ji-Kang;Hong, Eun-Seog;Kim, Yang-Ho
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.2 no.1
    • /
    • pp.31-36
    • /
    • 2004
  • Three workers, field operators in lubricating oil processing of petroleum refinery industry were found unconscious by other worker. One of them who were exposed to an high concentration of H2S was presented with Glasgow Coma Score of 5, severe hypoxemia on arterial blood gas analysis, normal chest radiography, and normal blood pressure. On hospital day 7, his mental state became clear, and neurologic examination showed quadriparesis, profound spasticity, increased tendon reflexes, abnormal Babinski response, and bradykinesia. He was also found to have decreased memory, attention deficits and blunted affect which suggest general cognitive dysfunction, which improved soon. MRI scan showed abnormal signals in both basal ganglia and motor cortex, compatible with clinical findings of motor dysfunction. Neuropsychologic testing showed deficits of cognitive functions. SPECT showed markedly decreased cortical perfusion in frontotemporoparietal area with deep white matter. Another case was recovered completely, but the other expired the next day.

  • PDF

Effect of Brain Angiotensin II Receptor Antagonists and Antisense Oligonucleotide on Drinking and Renal Renin in Rats

  • Cho, Hyeon-Kyeong;Yang, Eun-Kyoung;Han, Hee-Suk;Lee, Won-Jung;Phillips, M. Ian
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.2
    • /
    • pp.137-142
    • /
    • 2000
  • The physiological roles of brain angiotensin II in mediating water deprivation-induced drinking and in regulating renal renin release were assessed in male Sprague-Dawley rats. Specific $AT_1$ receptor antagonists, losartan and SK 1080, and antisense oligonucleotide (AS-ODN) directed to $AT_1$ receptor mRNA were intracerebroventricularly (i.c.v.) administered in conscious unrestrained rats. When water was given 20 min after i.c.v. injection of $AT_1$ receptor antagonists in 48-h water-deprived rats, losartan and SK 1080 produced approximatly 20% and 50% decrease in 1-h water intake, respectively. In contrast, i.c.v. treatment of the AS-ODN to $AT_1$ receptor mRNA for 24-h did not alter 1-h water intake in 24-h water-deprived rats, but prevented the increase in overnight water intake after 24-h water-deprivation. Six-day i.c.v. treatment of AS-ODN did not alter either the basal plasma renin concentration or renal cortical levels of renin and renin mRNA. The present results suggest that endogenous brain Ang II plays an important role in thirst and water intake through $AT_1$ receptors, but further studies are required to elucidate its regulatory role in renal renin synthesis.

  • PDF

Effect of Short Term Treatment with Different Dosage of Inhaled Flucatisone Propionate on Basal Cortisol Concentration (단기간 Fluticasone Propionate 투여 용량에 따른 가저 코르티솔 농도의 변화)

  • Kim, Hyun-Jung;Kim, Hyoung-Sik;Lee, Hong;Moon, Sung-Gi;Lim, Seok-Tae;Park, Ji-Hyun;Lee, Heung-Bum;Lee, Yong-Chul;Rhee, Yang-Keun
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.5
    • /
    • pp.1063-1071
    • /
    • 1997
  • Backgroung : The efficacy of oral corticosteroids in the treatment of chronic asthma is undisputed, but their long-term use is associated with adverse side-effects, including supression of the hypothalamic-pituitary adrenal axis function, osteoporosis, weight gain, hypertension and impaired glucose tolerance. The introduction of inhaled corticosteroids in the early 1970's represented a significant therapeutic advance in the management of asthma, since these compounds combined high topical potency with low systemic activity. Fluticasone propionate is a new topically active synthetic glucocorticosteroid that combinds a high degree of efficacy with negligible systemic bioavailability. This study was perfomed to determine the effect of inhaled fluticasone propionate on the adreocortical supression in patients with bronchial asthma or chronic obstructive pulmonary disease. Method : The adrenocortical function was assessed by measurement of plasma cortisol concentration at 8 o'clock in morning and free cortisol in 24 hour urine collection at interval. Absolutely, no steroid was taken during pretreatment period of 10days. There after each subject inhaled fluticasone aerosol, in daily doses of 500 or 1000micrograms for 12days. The dose was delivered by metered dose inhaler(MDI). Results : The serum cortisol and 24hour urinary free cortisol were not decreased during the treatment period in patients with inhaled fluticasone propionate in daily doses of 500 micrograms. In contrast, serum cortisol was significantly decreased on 9th and 12th day(p less than 0.05). And, 24hour urinary free cortisol was also significantly decreased on 3rd and 12th day of treatement period(p less than 0.05) in patients with inhaled fluticasone in daily doses of 1000 micrograms. Conclusion : These results suggested that endogenous cortisol secretion was not supressed after short-term inhalation of fluticasone in daily dose of 500 micrograms, but in daily dose of 1000 micrograms, the endogenous cortisol secretion was supressed.

  • PDF