• Title/Summary/Keyword: Basal Cell

Search Result 873, Processing Time 0.02 seconds

Microsporogenesis of Hibiscus syriacus L and Its Sporoderm Differentiation (무궁화의 화분형성 및 화분벽의 분화발달)

  • 김인선
    • Journal of Plant Biology
    • /
    • v.38 no.1
    • /
    • pp.95-105
    • /
    • 1995
  • Complete microsporogenesis of Hibiscus syriacus L. were carried out employing LM, TEM, and SEM to investigate the pollen ontogeny that undergoes considerable structural differentiation. The process first began with several cell diYisions in the anther primordium that produces 3 different tissues of epidennal, archesporial, and connective tissues. Only archesporial tissue involved further differentiation into the tapetum and formation of reproductive cells, pollen mother cells (PMC). The tapetum and PMC were closely associated with each other structurally and metabolically by exhibiting numerous plasmodesmata, mitochondria, and many small vacuoles in their dense cytoplasm. A callosic wall began to surround the PMC while meiosis took place in the PMC to produce 4 microspores. When thick callose encircled each microspore as a frame, the sporodenn development initiated from the plasma membrane of a pollen grain in a tetrad. The first fonned sporoderm layer was bacules and tectum of sexine that originated from the plasma membrane. After the dissolution of a callose, further development Qf sporoderm continued in the order of nexine 1, nexine 2, and intine layer. The nexine layer was thicker (ca. $2-3.5\;\mu\textrm{m}$) than the intine layer whose thickness was about $0.9-1.5\;\mu\textrm{m}$. Upon completion of the sporoderm development, that is after intine formation, spines and apertures of pollen surface ornamentation initiated from the tectum. Spines were dimorphic, about $4-9\;\mu\textrm{m}\;an;15-20\;\mu\textrm{m}$ in length, and no basal cushion was detected. The mature pollen grains ranged $100-200\;\mu\textrm{m}$ in diameter, but their average was about $170\;\mu\textrm{m}$. About 120 spines were observed over the spheroidal pollen surface. Apertures were simple punctures of $2-3\;\mu\textrm{m}$ in diameter and about 50 apertures were arranged somewhat helically over the surface. Comparing such features of form and size of the pollen, sporodenn sculpture and structure, and aperture and spine conditions with known evolutionary trends in the genus Hibiscus, Hibiscus syriacus seemed to possess many advanced features in the sporodenn differentiation.iation.

  • PDF

The expression patterns of RANKL and OPG in murine tooth eruption (치아발육시기에서의 RANKL 및 OPG의 발현 양상)

  • Hwang, Kyung-Mun;Kim, Eun-Jung;Kim, Young-Jin;Nam, Soon-Hyeun;Kim, Hyun-Jung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.33 no.2
    • /
    • pp.290-303
    • /
    • 2006
  • Tooth eruption is a complex and tightly regulated process that involves cells of the tooth organ and the surrounding alveolus. Osteoclast precursors must be recruited into the dental follicle prior to the onset of eruption. This function of dental follicle may be regarded as the ability of bone remodeling characterized by the interaction of osteoclasts and osteoblasts. This is because tooth eruption is a localized event in which many of the genes required for eruption are expressed in the dental follicle. RANKL is a membrane-bound protein that is a member of the TNF ligand family. which is present on bone marrow stromal cells and osteoblasts, and induces osteoclast formation and activation from precursor cell. The biologic effect of RANKL is inhibited by OPG and, in bone, the relative ratio of RANKL and OPG modulates osteoclastogenesis. To evaluate the roles of RANKL and OPG in tooth eruption and the relations with the expression pattern of Runx2, in situ hybridization was performed with mandibles of mice at postnatal stage 1, 3, 5, 7, 9 and 11. mRNA of RANKL, OPG, and Runx2 are expressed in dental follicle and surrounding tissue from P1 to 11. To determine the sites of osteoclastic activity during tooth eruption, mandibles were dissected. Peak osteoclastic activity in alveolar bone along the occlusal and basal regions was observed from P5 to 9, with osteoclasts in these regions being large and strongly TRAP-positive The specific spatio-temporal expression patterns of RANKL, OPG, and Runx2 in our study suggest that tooth eruption could be progressed through the interactions of molecular signaling among dental follicle, dental organ and alveolar bone, furthermore it means that dental follicle is quite important in tooth eruption In addition, it indicates that these genes (RANKL, OPG, and Runx2) play critical roles in tooth eruption.

  • PDF

Research on Immune Responses Induced by Salmonella Typhimurium Infectionin CRIP1-Deficient Condition (CRIP1결손조건 하에서 Salmonella Typhimurium 감염에 의해 유도되는 면역반응에 관한 연구)

  • Dongju Seo;Se-Hui Lee;Sun Park;Hyeyun Kim;Jin-Young Yang
    • Journal of Life Science
    • /
    • v.34 no.1
    • /
    • pp.48-58
    • /
    • 2024
  • Salmonella is a common food-borne intracellular bacterial pathogen that has triggered significant public health concerns. Salmonella hosts' genetic factors play a pivotal role in determining their susceptibility to the pathogen. Cysteine-rich intestinal protein 1 (CRIP1), a member of LIM/double zinc finger protein family, is widely expressed in humans, such as in the lungs, spleen, and especially the gut. Recently, CRIP1 has been reported as a key marker of several immune disorders; however, the effect of CRIP1 on bacterial infection remains unknown. We aimed to elucidate the relationship between Salmonella infection and CRIP1 gene deficiency, as Salmonella spp. is known to invade the Peyer's patches of the small intestine, where CRIP1 is highly expressed. We found that CRIP1-deficient conditions could not alter the characteristics of bone marrow-derived myeloid cells in terms of phagocytosis on macrophages and the activation of costimulatory molecules on dendritic cells using ex vivo differentiation. Moreover, flow cytometry data showed comparable levels of MHCII+CD11b+CD11c+ dendritic cells and MHCII+F4/80+CD11b+ macrophages between WT and CRIP1 knockout (KO) mice. Interestingly, the basal population of monocytes in the spleen and neutrophils in MLNs is more abundant in a steady state of CRIP1 KO mice than WT mice. Here, we demonstrated that the CRIP1 genetic factor plays dispensable roles in host susceptibility to Salmonella Typhimurium infections and the activation of myeloid cells. In addition, differential immune cell populations without antigen exposure in CRIP1 KO mice suggest that the regulation of CRIP1 expression may be a novel immunotherapeutic approach to various infectious diseases.