• Title/Summary/Keyword: Barotropic geostrophy

Search Result 1, Processing Time 0.018 seconds

Numerical Model Study for Structure and Distribution of the Keum River Plume (금강 풀룸의 구조와 분포에 대한 수치모델 연구)

  • 신은주;이상호;최현용
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.3
    • /
    • pp.157-170
    • /
    • 2002
  • To examine the structure and distribution of the Keum River plume produced by continuous river discharge we carried out three-dimensional numerical model experiments with or without Coriolis force and tide. When Coriolis force is included but tide is not the model plume forms the clockwise circulation north of southern channel in the developing stage. As the plume expansion progresses the center of circulation moves to the southwest, with fuming the discharging axis of low-salinity water to the southwest from the mouth of southern channel. These results are explained mainly in terms of barotropic geostrophy by surface slope maintained with accumulated low-salinity(buoyant) water in front of the estuary mouth due to of offshore strong salinity front. When the M$_2$ tide is included the model plume extends farther to the northwest, forming large tongue-like salinity distribution. The tidally averaged surface flows of the offshore plume are mainly in geostrophic balance. These changes in plume distribution are explained in terms of low-salinity water advection by tidal excursion and active tidal mixing; the former supplies low salinity water to the north off the estuary mouth and the later increases mean sea level along the plume and surface salinity in northern shallow coastal area. The main features of observed Keum River plume(Lee et al., 1999; Choi et al., 1999), which showed the northwestward deflection of the plume axis and northward deepening of the plume thickness from the estuary mouth region, are well reproduced by the model in which tide is included.