• Title/Summary/Keyword: Bark-Propagation algorithm

Search Result 4, Processing Time 0.017 seconds

A Neural Speech Processing Algorithm for Multielectrode Cochlear Implant System (신경회로망을 이용한 다중 전극 와우각 이식 시스템용 음성처리 알고리즘)

  • Choi, Jin-Young;Cho, Jin-Ho;Lee, Kuhn-Il
    • Journal of Biomedical Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.83-88
    • /
    • 1990
  • A New speech processing algorithm using neural networks is proposed. We transform input data into frequency domain and process them by neural networks of 22 output neurons which have Bark scale on the ground that the Bark scale is similiar with that of the characteristics of human cochlea. An utilized neural network is multilayer perceptron, and the characteristics of cochlea have it trained by error back propagation learning algorithm. The trained neural networks suffices functions of human cochlea including the effects of automatic gain control, compression and equalization. Simulation results show that the proposed speech processing algorithm has good performance in automatic gain control, compression and equalization.

  • PDF

Forecasting of Runoff Hydrograph Using Neural Network Algorithms (신경망 알고리즘을 적용한 유출수문곡선의 예측)

  • An, Sang-Jin;Jeon, Gye-Won;Kim, Gwang-Il
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.4
    • /
    • pp.505-515
    • /
    • 2000
  • THe purpose of this study is to forecast of runoff hydrographs according to rainfall event in a stream. The neural network theory as a hydrologic blackbox model is used to solve hydrological problems. The Back-Propagation(BP) algorithm by the Levenberg-Marquardt(LM) techniques and Radial Basis Function(RBF) network in Neural Network(NN) models are used. Runoff hydrograph is forecasted in Bocheongstream basin which is a IHP the representative basin. The possibility of a simulation for runoff hydrographs about unlearned stations is considered. The results show that NN models are performed to effective learning for rainfall-runoff process of hydrologic system which involves a complexity and nonliner relationships. The RBF networks consist of 2 learning steps. The first step is an unsupervised learning in hidden layer and the next step is a supervised learning in output layer. Therefore, the RBF networks could provide rather time saved in the learning step than the BP algorithm. The peak discharge both BP algorithm and RBF network model in the estimation of an unlearned are a is trended to observed values.

  • PDF

Adaptive Control Method of Robot Manipulators using a New Neural Network (새로운 신경회로망 구조를 이용한 로봇 매니퓰레이터의 적응 제어 방식)

  • Jung, Kyung-Kwon;Gim, Ine;Lee, Sung-Hyun;Lee, Hyun-Kwan;Eom, Ki-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.11a
    • /
    • pp.210-213
    • /
    • 1999
  • In this paper, we propose a new neural network for the control of a robot manipulator The proposed neural network structure is that all of network outputs feed bark into hidden units and output units from feedback units The feedback units are only to memorize the previous activations of the hidden units and output units and can be considered to function as one-step time delays. The proposed neural network works standard back-propagation Loaming algorithm. The simulation and experiment results showed the effectiveness of using the modified neural network structure in the control of the robot manipulator.

  • PDF

Ultrasonic Flaw Detection in Turbine Rotor Disc Keyway Using Neural Network (신경회로망을 이용한 터빈로타 디스크 키웨이의 결함 검출)

  • Son, Young-Ho;Lee, Jong-O;Yoon, Woon-Ha;Lee, Byung-Woo;Seo, Won-Chan;Lee, Jong-Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.1
    • /
    • pp.45-52
    • /
    • 2003
  • A number of stress corrosion cracks in turbine rotor disk keyway in power plants have been found and the necessity has been raised to detect and evaluate the cracks prior to the catastrophic failure of turbine disk. By ultrasonic RF signal analysis and using a neural network based on bark-propagation algorithm, we tried to evaluate the location, size and orientation of cracks around keyway. Because RF signals received from each reflector have a number of peaks, they were processed to have a single peak for each reflector. Using the processed RF signals, scan data that contain the information on the position of transducer and the arrival time of reflected waves from each reflector were obtained. The time difference between each reflector and the position of transducer extracted from the scan data were then applied to the back-propagation neural network. As a result, the neural network was found useful to evaluate the location, size and orientation of cracks initiated from keyway.