• 제목/요약/키워드: Bare Foot

검색결과 39건 처리시간 0.017초

경사로 오르기와 내리기 동안 압력중심 이동경로와 족저압 비교 (Comparison of Pathway of COP and Plantar Foot Pressures while Ascending and Descending a Slope)

  • 한진태
    • The Journal of Korean Physical Therapy
    • /
    • 제22권5호
    • /
    • pp.77-82
    • /
    • 2010
  • Purpose: The purpose of this study was to compare the pathway of COP and plantar foot pressure and to determine the correlation between plantar regions during the ascending and descending of a ramp. Methods: Fifteen healthy adults who had no musculoskeletal problems participated in our study. They were asked to walk on a level surface and on an ascending and descending ramp in their bare feet. Pathway of COP and plantar foot pressures were recorded using the Matscan system (Tekscan, Boston, USA). For pressure measurements, the plantar foot surface was divided into seven regions: two toe regions, three forefoot regions, a midfoot region, and a heel region. To determine whether there was a statistically significant difference between pathway of COP and plantar foot pressures during walking, we used repeated measuremes ANOVA. Results: In comparison to results for a level walking, pathway of COP while ascending a ramp had a tendency to be shifted medially in the forefoot and became longer till the big toe. Pathway of COP while descending a ramp also was shifted medially, but ended in the forefoot. Plantar foot pressure of the second and third metatarsal head and the fourth and fifth metatarsal heads was significantly decreased while descending the ramp. Conclusion: These results indicated that plantar foot pressure is changed while ascending and descending a ramp and demonstrated that ramp walking can affect the structure and function of the foot. Therefore, gait environment is associated with significant changes in foot characteristics, which contribute to altered plantar loading patterns during gait.

장애물을 걸어서 넘어갈때 측정한 발반력에 대한 생체역학적 해석 (A Biomechanical Analysis of Foot-Floor Reaction Forces Measured When Walking over an Obstacle)

  • 윤종일;손권;이민철
    • 대한기계학회논문집
    • /
    • 제17권7호
    • /
    • pp.1864-1873
    • /
    • 1993
  • A biomechanical approach was carried out to analyze foot-floor reaction forces acting on five male subjects performing a walking task. The task analyzed was walking over an obstacle with the right bare foot. The foot-floor reaction data were measured from a force plate, and then processed using a software developed. The source program was coded in the C language for easier on-line data acquisition and graphic displays. High repeatability was found in the reaction data acquired from three trials by each subject. For obstacle height from 0 to 25 cm, the maximum in reaction force reached up to 1.048 BW in the vertical, 0.174 BW in the anterior-posterior, and 0.054 BW in the medio-lateral components, respectively. A quantity was defined by the difference between two vertical reaction values, and this quantity was found to be proportional to the obstacle height. It was also shown that the whole body motion could be predicted the measured foot-floor reaction data.

보행 시 Wedged 인솔과 보행진행 각이 슬관절 외측 밀림(Lateral Thrust)에 미치는 영향 (The Influence of Wedged Insole and Foot Progression Angle on Lateral Thrust of Knee During Walking)

  • 정도영;김문환;권오윤
    • 한국전문물리치료학회지
    • /
    • 제11권2호
    • /
    • pp.27-34
    • /
    • 2004
  • The purpose of this study was to identify the influence of wedged insole and foot progression angle (FPG) on lateral thrust of knee in healthy subjects. Fifteen healthy male subjects were recruited from Suncheon First College, in Suncheon. The subjects randomly walked at the comfortable velocity under five conditions: bare footed, medio-lateral $10^{\circ}$ wedged insoles, toe-in and toe-out gait. The lateral thrust was measured by a accelerometer with telemeter during walking. Data was collected while each subject walked for about 10 gait cycle on a flat, level walkway at their normal speed. The middle three gait cycle were used for averaged peak value of lateral acceleration. The three averaged peak value of lateral acceleration were collected under each condition at heel strike. The results showed that averaged peak value of lateral acceleration increased significantly in medial wedged insole and toe-in gait and decreased significantly in lateral wedged insole and toe-out gait as compared with bare footed (p<.05). These results suggest that wedged insole as well as walking strategy, such as foot progression angle, may prevent progression of degenerative knee osteoarthritis.

  • PDF

6주간의 활지지 테이핑(arch support taping) 적용이 과도하게 엎침된 발의 발바닥압력과 발배뼈 높이에 미치는 영향 (The effect of Arch Support Taping on Plantar Pressure and Navicular Drop Height in subjects with Excessive pronated foot during 6 Weeks)

  • 김태호;고은경;정도영
    • 대한물리의학회지
    • /
    • 제6권4호
    • /
    • pp.489-496
    • /
    • 2011
  • Purpose : The purpose of this study was to identify the effect of an arch support taping on navicular drop height and plantar pressure in the subjects with excessive pronated foot for 6 weeks. Methods : The fifteen subjects with the pronated foot group and the fifteen subjects with the normal foot group volunteered for this study. Both groups were applied arch support taping at 3 times a week during 6 weeks. Subjects were assessed navicular drop test to evaluate pronation of subtalar joint and plantar pressure on treadmill for pressure measuring system during walking with a bare foot state at pre- taping, after 3 weeks, and after 6 weeks. A two-way repeated analysis of variance design was used to examine the difference of navicular drop height and plantar pressure in the pronation foot group and the normal foot group. Results : The pronated foot group had significantly decreased both the navicular drop height and the plantar pressure under the medial midfoot than the normal foot group after 6 weeks(p<.01). Conclusions : This study proposed that an arch support taping can be support to lift navicular bone as well as to transfer the foot pressure from medial midfoot to lateral midfoot in individuals with excessive pronated foot.

수직 반작용력 측정 장치 개발(II) (A Development of Device for Measurement of Vertical Ground Reaction Force(II))

  • 박진
    • 한국운동역학회지
    • /
    • 제13권3호
    • /
    • pp.341-354
    • /
    • 2003
  • The purpose of this study was to develop the uniaxial force plate system which is measured by the vertical force. The VGRF(vertical ground reaction force) 1.0 was composed of 2 bath digital scales, 2 indicaters, and analyzing software. This system was newly renovated to VGRF 2,0 which are 2 industrial digital scales, 2 adjustable indicators, and enforced analyzing software. Changes of the new system were as follows. First, the height of the plate was 75% lower than before. Second, sensing ability of the load cell was changed from 90 - 0.05kg to 300 - 0.1kg. Third, the speed of data processing was changed from 17 per second to 60 per second. Fourth, analyzing software was enforced to develop and calculate the data. For the test of the system, two different types(bare foot, high-heeled shoes) gait was adopted. highly skilled female walker(23yrs, height 165cm, body mass 46.8kg) participated for the experimental study. During the dynamic performance(gait analysis), the data of each load cell were very similar to the previous studies. Specifically, bare foot walking had less vertical force than high-heeled shoes. Consequently, VGRF 2.0 can sense the general dynamic movements as well as static load conditions.

Rear Foot Wedge 각도가 보행시 전족저 최대압력에 미치는 영향 (The Effect of Rear Foot Wedge Angle on Peak Plantar Pressures on the Forefoot During Walking)

  • 권오윤;정도영;박경희
    • 한국전문물리치료학회지
    • /
    • 제9권3호
    • /
    • pp.11-21
    • /
    • 2002
  • The purpose of this study was to find the effect of rear foot wedge angle on peak plantar pressures on the forefoot during walking. Twenty normal healthy subjects (10 female, 10 male) were recruited. Peak plantar pressure was measured using pressure distribution platforms (MatScan system) in medial forefoot (under the first, second metatarsal head) and lateral forefoot (under the third, fourth, fifth metatarsal head). The subjects walked at the comfortable velocity under seven conditions; bare footed, $5^{\circ}$, $10^{\circ}$ and $15^{\circ}$ wedges under the medial and lateral sides of the hindfoot. The three averaged peak plantar pressures were collected at each condition at stance and toe off phases. The results showed that a significant increase in lateral forefoot plantar peak pressure investigated in the medial wedge and a significant decrease in lateral forefoot plantar peak pressure investigated in lateral wedge at stance phase (p<.05). These results suggest that rear foot wedge may be useful to modify the peak plantar pressure on the forefoot.

  • PDF

깔창의 높이에 따른 전후 압력 분포와 좌우 균형에 관한 연구 (Investigation about anterior.posterior plantar pressure and right.left body balance by insole height)

  • 조덕상;고현곤;차승용;김미리;홍보람;서지희;전미희;송미리;이효숙;김민준;김형수
    • 대한물리치료과학회지
    • /
    • 제19권1호
    • /
    • pp.39-46
    • /
    • 2012
  • Purpose : The purpose of this study was to investigate the effect of body balance according to insole height and to provide basic information about body balance by insole height. Method : We examed 40 university students who had healthy body without balance impairment. Plantar pressure was measured by EMED system and the measurement of MTD balance used the MTD-balance master in static stance posture. Both of equipments are various measurement method. We measured plantar pressure and MTD balance each three different height insole(0cm, 3cm, 7cm) and each trial was 30 second in duration. Result : The results were as follows : 1) It showed significantly differences between bare foot and height insole. The anterior plantar pressure with 3cm or 7cm insole were more higher than bare foot(P<.05). 2) There were no significantly differences between barefoot and height insole with MTD-balance master(P<.05). Conclusion : In conclusion, the measurement of MTD balance showed right and left balance ability didn't change by insole height, but plantar pressure was moved on anterior side of foot so we could know insole's height cause the effect to anterior and posterior balance ability.

  • PDF

기능성 신발 쿨핀(Coolfin) 착용이 발등 및 엄지발가락 혈액순환에 미치는 영향 (The Effect of Functional Shoes (Coolfin) on Top of Foot and Great Toe Blood Circulation)

  • 김윤진;이동렬;상희선;이미남;박지원
    • The Journal of Korean Physical Therapy
    • /
    • 제26권4호
    • /
    • pp.220-225
    • /
    • 2014
  • Purpose: This study aims to investigate the impact of a short walk putting on Coolfin shoes on the foot temperature rise and blood circulation. Methods: Twenty healthy adults participated in experiments in this study. All subjects walked respectively barefoot and putting on Coolfin shoes. Infrared imaging cameras were used to collect and analyze the data on the foot temperature. Results: As a result of this study, there were significant differences between the temperatures of the great toe and top of the foot after 20-minute walks with bare feet and in Coolfin shoes. Both the temperatures of the great toe and top of the foot decreased after a 20-minute walk in the barefoot condition, and there was a significant difference between them (p<0.05). Both the temperatures of the great toe and top of the foot increased after a 20-minute walk in the condition of putting on Coolfin shoes, and there was a significant difference between them(p<0.05). Conclusion: A short walk putting on Coolfin products induces the movement of the toes to increase the blood flow and accordingly, has a direct impact on the increase of the surface temperature of the feet, so they are effective products for helping blood circulation in the feet.

신발 굽의 높이와 신발착용기간이 대퇴근육 활동량에 미치는 영향 (Effects of High-heel Shoes on EMG Activities of Rectus Femoris and Biceps Femoris)

  • 박은영;김원호;김경모;조상현
    • 한국전문물리치료학회지
    • /
    • 제6권2호
    • /
    • pp.32-42
    • /
    • 1999
  • This study was conducted to identify the effects of high-heel shoes on EMG activities of rectus femoris and biceps femoris in 28 healthy women. Subjects were composed of experimental group (wearing high-heel shoes) and control group (wearing low-heel shoes). Two groups participated in three conditions standing (bare foot wearing athletic shoes and 7.5 cm height shoes). In high-heel shoes condition, EMG activities of rectus femoris of control group were significantly lower than that of biceps femoris of experimental group, but EMG activities of both muscles of experimental group did not should significant difference. In bare foot standing condition, EMG activities of rectus femoris of experimental group were significantly lower than that of biceps femoris but EMG activities of both muscles of control group had no significant difference. These results showed that hamstring lengthening effects was produced when wearing high-heel shoes because the external knee extension moment was increased. In the short term, high-heel shoes effect on the increase of the biceps femoris activities by spindle reflex, but in the long term, the normal amplitude of the same muscle activities by Golgi tendon organ reflex.

  • PDF

편마비 환자의 앉은 자세에서 일어서기 동작 시 의자 높이와 발의 조건이 생체역학적 요소에 미치는 영향 (The Effects of Chair Height and Foot Condition on the Biomechanical Factors in Sit-to-Stand Movement of Hemiplegic Patients)

  • 김동훈;김택훈;최흥식;노정석;최규환;김기송
    • 한국전문물리치료학회지
    • /
    • 제25권2호
    • /
    • pp.1-12
    • /
    • 2018
  • Background: It is very difficult for hemiplegic patients to effectively perform the sit-to-stand (STS) movements independently because of several factors. Moreover, the analysis of STS motion in hemiplegic patients has been thus far confined to only muscle strength evaluation with little information available on structural and environmental factors of varying chair height and foot conditions. Objects: This study aimed to analyze the change in biomechanical factors (ground reaction force, center of mass displacement, and the angle and moment of joints) of the joints in the lower extremities with varying chair height and foot conditions in hemiplegic patients while they performed the STS movements. Methods: Nine hemiplegic patients voluntarily participated in this study. Their STS movements was analyzed in a total of nine sessions (one set of three consecutive sessions) with varying chair height and foot conditions. The biomechanical factors of the joints in the lower extremities were measured during the movements. Ground reaction force was measured using a force plate; and the other abovementioned parameters were measured using an infra-red camera. Two-way repeated analysis of variance was performed to determine the changes in biomechanical factors in the lower extremities with varying chair height and foot conditions. Results: No interaction was found between chair height and foot conditions (p>.05). All measured variables with varying chair height showed a significant difference (p<.05). Maximum joint flexion angle, maximum joint moment, and the displacement of the center of mass in foot conditions showed a significant difference (p<.05); however the maximum ground reaction force did not show a significant difference (p>.05). Conclusion: The findings suggest that hemiplegic patients can more stably and efficiently perform the STS movement with increased chair height and while they are bare-foot.