• 제목/요약/키워드: Bankruptcy

Search Result 278, Processing Time 0.026 seconds

Enforcement of Arbitration Agreement in the Dispute of Standby Letter of Credit (보증신용장거래 분쟁에서 중재합의의 이행가능성)

  • Park, Won-Hyung;Kang, Won-Jin
    • Journal of Arbitration Studies
    • /
    • v.19 no.3
    • /
    • pp.161-178
    • /
    • 2009
  • This article focuses on the enforceability of arbitration agreements m the dispute of standby letter of credit, especially with the case analysis of the leading case from the U.S. Bankruptcy Court. In Nova Hut a.s. v. Kaiser Group International Inc. case, while the underlying contract contained an arbitration clause, a guarantee to assure contractor's performance did not contain an arbitration clause. Nova Hut drew on the standby for the Contractor's failure to deliver contractual obligations. Against the Kaiser's action under US Bankruptcy law, Nova Hut moved to stay the proceedings pending arbitration, to compel arbitration, and to dismiss the complaint. The US Bankruptcy Court for the District of Delaware denied Nova Hut's motions. On appeal, Kaiser argued that it was not subject to arbitration since it was not a party to the contract. It also argued that Nova Hut had waived its right to arbitration by filing a proof of claim in the bankruptcy proceeding and commencing legal actions in other countries. The appeals court noted that in order to avoid arbitration on those grounds prejudice must be shown. It indicated that because there was no long delay in requesting arbitration and no discovery conducted m the course of litigation, the Kaiser could not demonstrate actual prejudice on the part of Owner. In light of public policy favoring arbitration, the nature of the claims in the parties' agreements, Kaiser's conduct in embracing the agreements, and their expectation of benefit, the appeals court ruled that the doctrine of equitable estoppel applied in requiring the Parent to arbitrate.

  • PDF

Bankruptcy prediction using ensemble SVM model (앙상블 SVM 모형을 이용한 기업 부도 예측)

  • Choi, Ha Na;Lim, Dong Hoon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.6
    • /
    • pp.1113-1125
    • /
    • 2013
  • Corporate bankruptcy prediction has been an important topic in the accounting and finance field for a long time. Several data mining techniques have been used for bankruptcy prediction. However, there are many limits for application to real classification problem with a single model. This study proposes ensemble SVM (support vector machine) model which assembles different SVM models with each different kernel functions. Our ensemble model is made and evaluated by v-fold cross-validation approach. The k top performing models are recruited into the ensemble. The classification is then carried out using the majority voting opinion of the ensemble. In this paper, we investigate the performance of ensemble SVM classifier in terms of accuracy, error rate, sensitivity, specificity, ROC curve, and AUC to compare with single SVM classifiers based on financial ratios dataset and simulation dataset. The results confirmed the advantages of our method: It is robust while providing good performance.

A Study on Classification Models for Predicting Bankruptcy Based on XAI (XAI 기반 기업부도예측 분류모델 연구)

  • Jihong Kim;Nammee Moon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.8
    • /
    • pp.333-340
    • /
    • 2023
  • Efficient prediction of corporate bankruptcy is an important part of making appropriate lending decisions for financial institutions and reducing loan default rates. In many studies, classification models using artificial intelligence technology have been used. In the financial industry, even if the performance of the new predictive models is excellent, it should be accompanied by an intuitive explanation of the basis on which the result was determined. Recently, the US, EU, and South Korea have commonly presented the right to request explanations of algorithms, so transparency in the use of AI in the financial sector must be secured. In this paper, an artificial intelligence-based interpretable classification prediction model was proposed using corporate bankruptcy data that was open to the outside world. First, data preprocessing, 5-fold cross-validation, etc. were performed, and classification performance was compared through optimization of 10 supervised learning classification models such as logistic regression, SVM, XGBoost, and LightGBM. As a result, LightGBM was confirmed as the best performance model, and SHAP, an explainable artificial intelligence technique, was applied to provide a post-explanation of the bankruptcy prediction process.

A Bandwidth a Allocation Scheme based on Bankruptcy theory in Distributed Mobile Multimedia Network (분산 모바일 멀티미디어 통신망에서 파산이론을 적용한 대역폭 할당기법)

  • Jeong, Seong Soon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.246-251
    • /
    • 2013
  • In this paper, it is proposed a bandwidth allocation Scheme based on Bankruptcy theory in Distributed Mobile Multimedia Network. The proposed scheme is guaranteed a minimum allocation. So, the minimum quality of each service are guaranteed. Therefore efficient and fairness network can be configured. The performance evaluation results indicate that the proposed scheme has good performance than other existing schemes by the fairness index and the Erlang blocking formular calculation. The minimum bandwidth of the proposed scheme can be applied to other techniques of a priority based bandwidth allocation scheme and dynamic bandwidth allocation scheme.

Integrated Corporate Bankruptcy Prediction Model Using Genetic Algorithms (유전자 알고리즘 기반의 기업부실예측 통합모형)

  • Ok, Joong-Kyung;Kim, Kyoung-Jae
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.4
    • /
    • pp.99-121
    • /
    • 2009
  • Recently, there have been many studies that predict corporate bankruptcy using data mining techniques. Although various data mining techniques have been investigated, some researchers have tried to combine the results of each data mining technique in order to improve classification performance. In this study, we classify 4 types of data mining techniques via their characteristics and select representative techniques of each type then combine them using a genetic algorithm. The genetic algorithm may find optimal or near-optimal solution because it is a global optimization technique. This study compares the results of single models, typical combination models, and the proposed integration model using the genetic algorithm.

  • PDF

An Empirical Analysis of Boosing of Neural Networks for Bankruptcy Prediction (부스팅 인공신경망학습의 기업부실예측 성과비교)

  • Kim, Myoung-Jong;Kang, Dae-Ki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.1
    • /
    • pp.63-69
    • /
    • 2010
  • Ensemble is one of widely used methods for improving the performance of classification and prediction models. Two popular ensemble methods, Bagging and Boosting, have been applied with great success to various machine learning problems using mostly decision trees as base classifiers. This paper performs an empirical comparison of Boosted neural networks and traditional neural networks on bankruptcy prediction tasks. Experimental results on Korean firms indicated that the boosted neural networks showed the improved performance over traditional neural networks.

Support vector machines with optimal instance selection: An application to bankruptcy prediction

  • Ahn Hyun-Chul;Kim Kyoung-Jae;Han In-Goo
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2006.06a
    • /
    • pp.167-175
    • /
    • 2006
  • Building accurate corporate bankruptcy prediction models has been one of the most important research issues in finance. Recently, support vector machines (SVMs) are popularly applied to bankruptcy prediction because of its many strong points. However, in order to use SVM, a modeler should determine several factors by heuristics, which hinders from obtaining accurate prediction results by using SVM. As a result, some researchers have tried to optimize these factors, especially the feature subset and kernel parameters of SVM But, there have been no studies that have attempted to determine appropriate instance subset of SVM, although it may improve the performance by eliminating distorted cases. Thus in the study, we propose the simultaneous optimization of the instance selection as well as the parameters of a kernel function of SVM by using genetic algorithms (GAs). Experimental results show that our model outperforms not only conventional SVM, but also prior approaches for optimizing SVM.

  • PDF

A Hybrid Under-sampling Approach for Better Bankruptcy Prediction (부도예측 개선을 위한 하이브리드 언더샘플링 접근법)

  • Kim, Taehoon;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.2
    • /
    • pp.173-190
    • /
    • 2015
  • The purpose of this study is to improve bankruptcy prediction models by using a novel hybrid under-sampling approach. Most prior studies have tried to enhance the accuracy of bankruptcy prediction models by improving the classification methods involved. In contrast, we focus on appropriate data preprocessing as a means of enhancing accuracy. In particular, we aim to develop an effective sampling approach for bankruptcy prediction, since most prediction models suffer from class imbalance problems. The approach proposed in this study is a hybrid under-sampling method that combines the k-Reverse Nearest Neighbor (k-RNN) and one-class support vector machine (OCSVM) approaches. k-RNN can effectively eliminate outliers, while OCSVM contributes to the selection of informative training samples from majority class data. To validate our proposed approach, we have applied it to data from H Bank's non-external auditing companies in Korea, and compared the performances of the classifiers with the proposed under-sampling and random sampling data. The empirical results show that the proposed under-sampling approach generally improves the accuracy of classifiers, such as logistic regression, discriminant analysis, decision tree, and support vector machines. They also show that the proposed under-sampling approach reduces the risk of false negative errors, which lead to higher misclassification costs.

An Empirical Study on the Failure Prediction for KOSDAQ Firms (코스닥기업의 부실예측에 대한 실증 분석)

  • Park, Hee-Jung;Kang, Ho-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.3
    • /
    • pp.670-676
    • /
    • 2009
  • Bankruptcy of firms in Korea can cause distress of financial institutions because these institutions have disterssed bond. Accordingly, social and economical spill-over effects by these results are very big. Even after the difficult times of IMF crisis had ended, bankruptcy of information-based small-medium companies and venture firms listed on the KOSDAQ has been continued. In this context, this study developed and adopted failure prediction models for which discriminant analysis was used. Samples of this study was 81 firms respectively for both failed and non-failed firms listed on the KOSDAQ between the year of 2000 and 2007. The results of this study are as follows. First, the accuracy of classification of the model by years was $74.5%{\sim}76.5%$, and the accuracy of classification of the mean model was $69.6%{\sim}80.4%$. Among the models, the mean model of -one year, -two years, and -three years was highest in accuracy of classification (80.4%). Second, accuracy of prediction of final model adopted on validation samples showed 85% before one year of bankruptcy. The results of this study may be significant in that the results may be used as early warning system for bankruptcy prediction of KOSDAQ firms.

Domain Knowledge Incorporated Counterfactual Example-Based Explanation for Bankruptcy Prediction Model (부도예측모형에서 도메인 지식을 통합한 반사실적 예시 기반 설명력 증진 방법)

  • Cho, Soo Hyun;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.307-332
    • /
    • 2022
  • One of the most intensively conducted research areas in business application study is a bankruptcy prediction model, a representative classification problem related to loan lending, investment decision making, and profitability to financial institutions. Many research demonstrated outstanding performance for bankruptcy prediction models using artificial intelligence techniques. However, since most machine learning algorithms are "black-box," AI has been identified as a prominent research topic for providing users with an explanation. Although there are many different approaches for explanations, this study focuses on explaining a bankruptcy prediction model using a counterfactual example. Users can obtain desired output from the model by using a counterfactual-based explanation, which provides an alternative case. This study introduces a counterfactual generation technique based on a genetic algorithm (GA) that leverages both domain knowledge (i.e., causal feasibility) and feature importance from a black-box model along with other critical counterfactual variables, including proximity, distribution, and sparsity. The proposed method was evaluated quantitatively and qualitatively to measure the quality and the validity.