• Title/Summary/Keyword: Bandgap

Search Result 626, Processing Time 0.029 seconds

Strain evolution in Tin Oxide thin films deposited by powder sputtering method

  • Cha, Su-Yeon;Gang, Hyeon-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.283.1-283.1
    • /
    • 2016
  • Tin Oxide(SnO2) has been widely investigated as a transparent conducting oxide (TCO) and can be used in optoelectronic devices such as solar cell and flat-panel displays. It would be applicable to fabricating the wide bandgap semiconductor because of its bandgap of 3.6 eV. In addition, SnO2 is commonly used as gas sensors. To fabricate high quality epitaxial SnO2 thin films, a powder sputtering method was used, in contrast to typical sputtering technique with sintered target. Single crystalline sapphire(0001) substrates were used. The samples were prepared with varying the growth parameters such as gas environment and film thickness. Then, the samples were characterized by using X-ray diffraction, scanning electron microscopy, and atomic force microscopy measurements. We found that the strain evolution of the samples was highly affected by gas environment and growth rate, resulted in the delamination under O2 environment.

  • PDF

Epitaxial growth of Tin Oxide thin films deposited by powder sputtering method

  • Baek, Eun-Ha;Kim, So-Jin;Gang, Hyeon-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.185.2-185.2
    • /
    • 2015
  • Tin Oxide (SnO2) has been widely investigated as a transparent conducting oxide (TCO) and can be used in optoelectronic devices such as solar cell and flat-panel displays. In addition, it would be applicable to fabricating the wide bandgap semiconductor because of its bandgap of 3.6 eV. There have been concentrated on the improvement of optical properties, such as conductivity and transparency, by doping Indium Oxide and Gallium Oxide. Recently, with development of fabrication techniques, high-qulaity SnO2 epitaxial thin films have been studied and received much attention to produce the electronic devices such as sensor and light-emitting diode. In this study, powder sputtering method was employed to deposit epitaxial thin films on sapphire (0001) substrates. A commercial SnO2 powder was sputtered. The samples were prepared with varying the growth parameters such as gas environment and film thickness. Then, the samples were characterized by using XRD, SEM, AFM, and Raman spectroscopy measurements. The details of physical properties of epitaxial SnO2 thin films will be presented.

  • PDF

Temperature Stable Current Source Using Simple Self-Bias Circuit

  • Choi, Jin-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.2
    • /
    • pp.215-218
    • /
    • 2009
  • In this paper, temperature stable current and voltage references using simple CMOS bias circuit are proposed. To obtain temperature stable characteristics of bias circuit a bandgap reference concept is used in a conventional circuit. The parasitic bipolar transistors or MOS transistors having different threshold voltage are required in a bandgap reference. Thereby the chip area increase or the extra CMOS process is required compared to a standard CMOS process. The proposed reference circuit can be integrated on a single chip by a standard CMOS process without the extra CMOS process. From the simulation results, the reference current variation is less than ${\pm}$0.44% over a temperature range from - $20^{\circ}C$ to $80^{\circ}C$. And the voltage variation is from - 0.02% to 0.1%.

Design of Phase Shift Lines in Linear Power Amplifier Using Shifted Photonic Bandgap (가변 PBG 천이격자를 이용한 선형증폭기 위상제어 선로 설계)

  • 윤진호;서철헌
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.5C
    • /
    • pp.496-499
    • /
    • 2002
  • In this paper, a phase shifter with shifting photonic bandgap(PBG) cell in linear feedforward amplifier is designed and fabricated in 5GHz wireless LAN band. Now a day, the phase shifter has been fabricated with hybrid type. In this paper, a portion of PBG cell is shifted for the tuning phase. The phase shift was achieved maximum 80o in our PBG structure. Shifting PBG cell has been applied in feedforward main loop to cancel the main two tone signal.

An Optimization of 600V GaN Power SIT (600V급 GaN Power SIT 설계 최적화에 관한 연구)

  • Oh, Ju-Hyun;Yang, Sung-Min;Jung, Eun-Sik;Sung, Man-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.5-5
    • /
    • 2010
  • Gallium Nitride(GaN)는 LED, Laser 등에 사용되는 광학적 특성뿐만 아니라 Wide Bandgap의 전기적 특성 또한 주목받고 있다. 본 논문은 600V급 GaN(Gallium Nitride) Power SIT(Static Induction Transistor)에 대해서 Design Parameter 변환에 따른 전기적 (Breakdown Voltgage, On-state Voltage Drop)특성과 열적 (Lattice Temperature Distribution)특성변화를 분석하여 소자가 갖는 구조적 손실을 최소화하였다. 또한, 기존 실리콘 기반 전력소자와 특성 비교를 통하여 GaN Power SIT의 우수성을 증명하였다. GaN Power SIT 소자 설계 및 최적화를 위해서 Silvaco사의 소자 시뮬레이터인 ATLAS를 사용하였다. 실험 결과 수 ${\mu}m$의 소자 두께만으로도 실리콘 전력소자에 비해 더 뛰어난 열 특성과 더 적은 전력소모를 갖는 600V급 GaN Power SIT 소자를 구현할 수 있었다.

  • PDF

Improvement of Ka band Power Amplifier Employing Photonic Band Gap Structure (PBG 구조를 이용한 Ka Band 전력증폭기 성능개선에 관한 연구)

  • Seo Chulhun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.1
    • /
    • pp.65-68
    • /
    • 2004
  • The performances of millimeter wave Power amplifier have been improved by using PBG (photonic bandgap structure) in this paper. The PBG structure has been optimized to obtain the lowpass characteristics in Ka band and employed at output port of Ka band power amplifier. The harmonics of the power amplifier have been suppressed by the PBG of output port and the proposed PBG has suppressed the second harmonic to 40dBc around 50 GHz. The improvements of IMD and PAE of the amplifier employing the PBG structure are obtained $15\%$ and $25\%$, compared with those of the conventional Ka band power amplifier, respectively.

Fabrication of Master Replication by Nanoimprint Lithography (나노 임프린트 리소그라피에 의한 마스터 복제 공정)

  • Jeong, Myung-Yung
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1078-1082
    • /
    • 2003
  • A feasibility study for the fabrication of master replication with nanostructures by Nanoimprint Lithography (NIL) was investigated for application of polymer Photonic Bandgap (PBG) devices used in photonic IC. Large area gratings of $9{\times}15(mm^2)$ with p = 400 nm was successfully embossed on PMMA on silicon wafer and the embossing parameters (temperature, pressure, time) were established. A precise control of $O_2$ plasma Reactive Ion Etching (RIE) process time allowed window opening over the whole area despite the presence of wafer bending. Master replication with aspect ratio 1 was successfully fabricated, but master replication with aspect ratio 3 needs to optimize parameters. All replications were done in a NIL process.

  • PDF