• Title/Summary/Keyword: Band Frequency Energy

Search Result 311, Processing Time 0.029 seconds

Properties of MgMoO4:Eu3+ Phosphor Thin Films Grown by Radio-frequency Magnetron Sputtering Subjected to Thermal Annealing Temperature (열처리 온도 변화에 따른 라디오파 마그네트론 스퍼터링으로 성장된 MgMoO4:Eu3+ 형광체 박막의 특성)

  • Cho, Shinho
    • Current Photovoltaic Research
    • /
    • v.4 no.1
    • /
    • pp.25-29
    • /
    • 2016
  • $Eu^{3+}$-activated $MgMoO_4$ phosphor thin films were grown at $400^{\circ}C$ on quartz substrates by radio-frequency magnetron sputter deposition from a 15 mol% Eu-doped $MgMoO_4$ target. After the deposition, the phosphor thin films were annealed at several temperatures for 30 min in air. The influence of thermal annealing temperature on the structural and optical properties of $MgMoO_4:Eu^{3+}$ phosphor thin films was investigated by using X-ray diffraction (XRD), photoluminescence (PL), and ultraviolet-visible spectrophotometry. The transmittance, optical band gap, and intensities of the luminescence and excitation spectra of the thin films were found to depend on the thermal annealing temperature. The XRD patterns indicated that all the thin films had a monoclinic structure with a main (220) diffraction peak. The highest average transmittance of 91.3% in the wavelength range of 320~1100 nm was obtained for the phosphor thin film annealed at $800^{\circ}C$. At this annealing temperature the optical band gap energy was estimated as 4.83 eV. The emission and excitation spectra exhibited that the $MgMoO_4:Eu^{3+}$ phosphor thin films could be effectively excited by near ultraviolet (281 nm) light, and emitted the dominant 614 nm red light. The results show that increasing RTA temperature can enhance $Eu^{3+}$ emission and excitation intensity.

fiber Orientation Effects on the Acoustic Emission Characteristics of Class fiber-Reinforced Composite Materials (유리섬유강화 복합재의 AR특성에 대한 섬유배향 효과)

  • Kim, Jung-Hyun;Woo, Sung-Choong;Choi, Nak-Sam
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.5
    • /
    • pp.429-438
    • /
    • 2003
  • The effects of fiber orientation on acoustic emission(AE) characteristics have been studied for the unidirectional and satin-weave, continuous glass-fiber reinforced plastic(UD-GFRP and SW-GFRP) tensile specimens. Reflection and transmission optical microscopy was used for investigation of the damage zone of specimens. AE signals were classified as different types by using short time fourier transform(STFT) : AE signals with high intensity and high frequency band were due to fiber fracture, while weak AE signals with low frequency band were due to matrix and interfacial cracking. The feature in the rate of hit-events having high amplitudes showed a process of fiber breakages, which expressed the characteristic fracture processes of individual fiber-reinforced plastics with different fiber orientations and with different notching directions. As a consequence, the fracture behavior of the continuous GFRP could be monitored as nondestructive evaluation(NDE) through the AE technique.

A Study on the Development of Power-Line EMI Filter for the Prevention of Conduction Noise by Coil Loads. (코일성 부하에 의한 전도 노이즈 방지 목적의 전원용 EMI필터 개발 연구)

  • Kim, Byeong Jun;Joo, Jae-hun;Kim, Jin Ae;Baek, Pan Keun;Choi, Jung-Keyng
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.175-179
    • /
    • 2009
  • this paper proposes a filter design that makes to be satisfied EMC spec. in reliability test of analogue switch for electronic equipment and air conditioning load unit. A designed electromagnetic wave filter was applied to minimize an mutual interference and surrounding environment and improve the product's quality being satisfied to EMC standard. By simulation, using a spectrum analyzer at the 30MHz~1GHz band, ISO/JASO standard frequency range, and simplified EMI chamber, energy distribution of a specific frequency band was analyzed and the capacity of the element which composed the filter was determined in order to implement the most suitable electromagnetic wave filter.In fact, it was certificated that noise decrease by filter addition to the analogue switch for electronic equipment and air conditioning load unit in Certification Authority, and confirmed that the unit is carried out a normal action without electromagnetic wave interference.

  • PDF

Electromagnetic Interference of GMDSS MF/HF Band by Offshore Wind Farm (해상풍력 발전단지에 의한 GMDSS MF/HF 대역 전자파 간섭 영향 연구)

  • Oh, Seongwon;Park, Tae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.47-52
    • /
    • 2021
  • Recently, the share of wind power in energy markets has sharply increased with the active development of renewable energy internationally. In particular, large-scale wind farms are being developed far from the coast to make use of abundant wind resources and to reduce noise pollution. In addition to the electromagnetic interference (EMI) caused by offshore wind farms to coastal or air surveillance radars, it is necessary to investigate the EMI on global maritime distress and safety system (GMDSS) communications between ship and coastal stations. For this purpose, this study investigates whether the transmitted field of MF/HF band from a ship would be subject to interference or attenuation below the threshold at a coastal receiver. First, using geographic information system digital maps and 3D CAD models of wind turbines, the area of interest is electromagnetically modeled with patch models. Although high frequency analysis methods like Physical Optics are appropriate to analyze wide areas compared to its wavelength, the high frequency analysis method is first verified with an accurate low frequency analysis method by simplifying the surrounding area and turbines. As a result, the received wave power is almost the same regardless of whether the wind farms are located between ships and coastal stations. From this result, although wind turbines are large structures, the size is only a few wavelengths, so it does not interfere with the electric field of MF/HF distress communications.

A Minimum Energy Consuming Mobile Device Relay Scheme for Reliable QoS Support

  • Chung, Jong-Moon;Kim, Chang Hyun;Lee, Daeyoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.2
    • /
    • pp.618-633
    • /
    • 2014
  • Relay technology is becoming more important for mobile communications and wireless internet of things (IoT) networking because of the extended access network coverage range and reliable quality of service (QoS) it can provide at low power consumption levels. Existing mobile multihop relay (MMR) technology uses fixed-point stationary relay stations (RSs) and a divided time-frame (or frequency-band) to support the relay operation. This approach has limitations when a local fixed-point stationary RS does not exist. In addition, since the time-frame (or frequency-band) channel resources are pre-divided for the relay operation, there is no way to achieve high channel utilization using intelligent opportunistic techniques. In this paper, a different approach is considered, where the use of mobile/IoT devices as RSs is considered. In applications that use mobile/IoT devices as relay systems, due to the very limited battery energy of a mobile/IoT device and unequal channel conditions to and from the RS, both minimum energy consumption and QoS support must be considered simultaneously in the selection and configuration of RSs. Therefore, in this paper, a mobile RS is selected and configured with the objective of minimizing power consumption while satisfying end-to-end data rate and bit error rate (BER) requirements. For the RS, both downlink (DL) to the destination system (DS) (i.e., IoT device or user equipment (UE)) and uplink (UL) to the base station (BS) need to be adaptively configured (using adaptive modulation and power control) to minimize power consumption while satisfying the end-to-end QoS constraints. This paper proposes a minimum transmission power consuming RS selection and configuration (MPRSC) scheme, where the RS uses cognitive radio (CR) sub-channels when communicating with the DS, and therefore the scheme is named MPRSC-CR. The proposed MPRSC-CR scheme is activated when a DS moves out of the BS's QoS supportive coverage range. In this case, data transmissions between the RS and BS use the assigned primary channel that the DS had been using, and data transmissions between the RS and DS use CR sub-channels. The simulation results demonstrate that the proposed MPRSC-CR scheme extends the coverage range of the BS and minimizes the power consumption of the RS through optimal selection and configuration of a RS.

A Sliding Window-Based Energy Detection Method under Noise Uncertainty for Cognitive Radio Systems (Cognitive Radio 시스템에서 불확실한 잡음 전력을 고려한 슬라이딩 윈도우 기반 에너지 검출 기법)

  • Kim, Young-Min;Sohn, Sung-Hwan;Kim, Jae-Moung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.11A
    • /
    • pp.1105-1116
    • /
    • 2008
  • Cognitive radio is one of the most effective techniques to improve the spectrum utilization efficiency. To implement the cognitive radio, spectrum sensing is considered as the key functionality because only counting on it, can the secondary users identify the spectrum holes and utilize them efficiently without causing interference to primary users. Generally, there are several spectrum sensing methods; the most common and simplest method is energy detection. However, the conventional energy detection has some disadvantages, which are caused by noise, especially, uncertain noise power leads to degradation of energy detector. In this paper, to solve this problem, we proposed sliding window-based energy detection method which can devide the frequency band of primary signal and noise using sliding window to estimate the power of primary user without the noise effect and achieve the better performance. It can calculate the energy of primary user only and can detect the primary signal. The simulation result shows that our proposed method outperforms conventional one.

Performance Improvement of Perceptual Filter Using Noise Energy Control (잡음 에너지 제어를 통한 지각 필터 성능 개선)

  • Seo Joung-Kook;Cha Hyung-Tai
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.43-51
    • /
    • 2005
  • In this paper, we propose an algorithm that improves a tone quality of a noisy audio signal in order to enhance a Performance of perceptual filter using noise energy control. Most of the algorithms which were proposed by the other researchers usually applied a filter using the noise energy acquired from a silent range. In this case. the improvement rate of tone quality decreases if the noise energy is changed by the magnitude or environment variation in a signal frame. But the Proposed method Provides the means to find a food estimated noise through energy control of the estimated noise which is obtained from a silent range. Also we can get the enhancement of tone qualify in low frequency band unlike other methods. To show the performance of the Proposed algorithm, various input signals which had a different signal-to-noise ratio (SNR) such as 5dB, l0dB, 15dB and 20dB were used to test the proposed algorithm. With the proposed algorithm, we could confirm the enhancement of tone quality in terms of segmental SNR (SSNR). noise-to-mask ration (NMR) and mean opinion score (MOS) test.

White Electroluminescent Device by ZnS: Mn, Cu, Cl Phosphors

  • Kim, Jong-Su;Park, Je-Hong;Lee, Sung-Hun;Kim, Gwang-Chul;Kwon, Ae-Kyung;Park, Hong-Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.5 no.3 s.16
    • /
    • pp.1-4
    • /
    • 2006
  • White-light-emitting ZnS:Mn, Cu, Cl phosphors with spherical shape and the size of $20\;{\mu}m$ are successfully synthesized. They have the double phases of cubic and hexagonal structures. They are applied to electroluminescent (EL) devices by silk screen method with the following structure: $electrode/BaTiO_3$ insulator layer ($50{\sim}60\;{\mu}m$)/ ZnS:Mn, Cu, Cl phosphor layer ($30{\sim}50\;{\mu}m$)/ITO glass. The EL devices are driven with the voltage of 100 V and the frequency of 400 Hz. The EL devices show the three emission peaks. The blue and green emission bands are originated from $CICu^{2+}$ transition and $ClCu^+$ transition, respectively. The yellow emission band results from $^4T^6A$ transition of $Mn^{2+}$ ion. As an increase of Cu concentrations, the blue and green emission intensities decrease whereas the yellow emission intensity increases; the quality becomes warm white. It is due to the energy transfer from the blue and green bands to the yellow band.

  • PDF

Performance Analysis of BLE System for Wireless IoT Network Design (IoT 무선 네트워크 설계를 위한 BLE 시스템의 성능 분석)

  • Jae-sung Roh
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.481-486
    • /
    • 2022
  • The recent rapid growth of the IoT(Internet of Things) is leading to the spread of low-power wireless technology. A major challenge in designing IoT wireless networks is to achieve coexistence between different wireless technologies that share the 2.4 [GHz] ISM (Industrial Scientific Medical) frequency band. Therefore, there is a need for research on improving the reliability of wireless networks and coexisting operation between wireless networks. In particular, it is necessary to study an interference model and performance for mutual service coexistence in a BLE (Bluetooth Low Energy) wireless network environment, which is expected to be widely used as a connection medium between devices in various industrial fields. In this paper, the co-channel interference model with the IEEE 802.15.4 system is established focusing on the physical layer of the BLE system widely used in residential and industrial wireless applications, and the performance of the BLE wireless communication system is analyzed in the co-channel interference environment. As a result of the analysis, as the distance between the interference source and the BLE system increases in an environment where noise and co-channel interference exist, the amount of co-channel interference decreases and the error rate performance of the BLE system improves.

The Properties of Boron-doped Zinc Oxide Film Deposited according to Oxygen Flow Rate

  • Kim, Dong-Hae;Son, Chan-Hee;Yun, Myoung-Soo;Lee, Jin-Young;Jo, Tae-Hoon;Seo, Il-Won;Jo, I-Hyun;Roh, Jun-Hyung;Choi, Eun-Ha;Uhm, Han-Sup;Kwon, Gi-Chung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.358-358
    • /
    • 2012
  • The application of BZO (Boron-doped Zinc Oxide) films use as the TCO(Transparent Conductive Oxide) material for display and solar cell industries, where the conductivity of the BZO films plays a critical role for improvement of cell performance. Thin BZO films are deposited on glass substrates by using RF sputter system. Then charging flow rates of O2 gas from zero to 10 sccm, thereby controlling the impurity concentration of BZO. BZO deposited on soda lime glass and RF power was 300 W, frequency was 13.56 MHz, and working pressure was $5.0{\times}10-6$ Torr. The Substrate and glass between distance 200 mm. We measured resistivity, conductivity, mobility by hall measurement system. Optical properties measured by photo voltaic device analysis system. We measured surface build according to oxygen flow rate from XPS (X-ray Photoelectron Spectroscopy) system. The profile of the energy distribution of the electrons emitted from BZO films by the Auger neutralization is measured and rescaled so that Auger self-convolution arises, revealing the detail structure of the valence band. It may be observed coefficient ${\gamma}$ of the secondary electron emission from BZO by using ${\gamma}$-FIB (Gamma-Focused Ion Beam) system. We observed the change in electrical conductivity by correlation of the valence band structure. Therefore one of the key issues in BZO films may be the valence band that detail structure dominates performance of solar cell devices. Demonstrating the secondary electron emission by the Auger neutralization of ions is useful for the determination of the characteristics of BZO films for solar cell and display developments.

  • PDF