• Title/Summary/Keyword: Ballistic Impact

Search Result 91, Processing Time 0.026 seconds

Ballistic Properties of Zr-based Amorphous Alloy Surface Composites Fabricated by High-Energy Electron-Beam Irradiation (고에너지 전자빔 투사방법으로 제조된 Zr계 비정질 합금 표면복합재료의 탄도충격 성능)

  • Do, Jeonghyeon;Jeon, Changwoo;Nam, Duk-Hyun;Kim, Choongnyun Paul;Song, Young Buem;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.12
    • /
    • pp.1047-1055
    • /
    • 2010
  • The objective of this study is to investigate the ballistic properties of Zr-based amorphous alloy surface composites fabricated by high-energy electron-beam irradiation. The mixture of Zr-based amorphous powders and $LiF+MgF_2$ flux powders was deposited on a pure Ti substrate, and then an electron beam irradiated this powder mixture to fabricate a one-layer surface composite. A four-layer surface composite, in which the composite layer thickness was larger than 3 mm, was also fabricated by irradiating the deposited powder mixture by an electron beam three times on the one-layer surface composite. The microstructural analysis results indicated that a small amount of fine crystalline particles were homogeneously distributed in the amorphous matrix of the surface composite layer. According to the ballistic impact test results, the surface composite layers effectively blocked a fast traveling projectile, while many cracks were formed at the composite layers, and thus the surface composite plates were not perforated. The surface composite layer containing ductile ${\beta}$ dendritic phases showed a better ballistic performance than the one without dendrites because dendritic phases hindered the propagation of shear bands or cracks.

A Study on the ballistic performance and fracture mode of anodized Aluminum 5052-H34 alloy laminates (알루미늄 5052-H34 합금 적층재의 방탄성능과 파괴모드에 관한 연구)

  • 손세원;김희재;박영의;홍성희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.507-512
    • /
    • 2000
  • The ob.jective of this study is to determine fracture behaviors(penetrati0n modes) and resistance to penetration duringballistic impact of Al 5052-H34 alloy laminates and anodized Al 5052-H34 alloy laminates. Resistance to penetration is determined by $V_{50}$ ballistic limit, a statical velocity with 50% probability for complete penetration, test method. Fracture behaviors and ballistic tolerance, described by penetration modes, are respectfully observed that result from V50 test and Projectile Through Plates (PTP) test at velocities greater than $V_{50}$. PTP tests were conducted with 0" obliquity at room temperature using 5.56mm ball projectile. $V_{50}$ tests with 0" obliquity at room temperature were conducted with projectiles that were able to achieve near or complete penetration during PTP tests. Surface Hardness, resistance to penetration, and penetration modes of A1 5052-H34 alloy laminates compared to those of anodized Al 5052-H34 alloy laminates.y laminates.

  • PDF

Analysis on the Ballistic and Blast Shock for a Space Frame Structure (내충격 개방형 구조물에 대한 피탄 및 폭압 충격 해석)

  • Joo, Jae-Hyun;Gimm, Hak-In;Koo, Man-Hoi;Park, Jee-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.933-940
    • /
    • 2010
  • A numerical analysis for the space frame structure under ballistic and blast loads was performed using LS-DYNA, a commercial code. The space frame structure was developed to be adapted to the ground vehicle in the future and it was designed to build with Al7039 frames and lightweight multi-layered panels for the purpose of weight reduction and shock mitigation. The analyses have done for side impacts by a cylindrical projectile and Comp. C-4 explosive representing major threats to the vehicle. The deformed shape of the panel section and stresses as well as accelerations of the frames calculated from LS-DYNA were compared to the test results to validate the analysis model. The internal energies for panels and frames from LS-DYNA were also compared to each other to discern their role in absorbing the ballistic and blast impact.

A study on the Spectra reinforcement composite of its ballistic performance (방탄용 Spectra 섬유 강화 복합재료에 관한 연구)

  • 강은영;윤영기;윤희석
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.83-86
    • /
    • 2001
  • This paper presents an investigation of the contribution of fibers in energy absorption during impact and the effect of resin types on properties of the high strength polyethylene (Spectra-900 PE) composite. In high strength polyethylene fiber, main impact energy absorbing mechanism was tensile breakage and deformation of fiber. Two types of resin were examined : Unsaturated polyester (UP) and Epoxy. Tensile and 3-point bending test have been performed to investigate the changes of mechanical properties. In tensile and flexural testes, the Spectra Composite prepregged with UP showed higher properties than Spectra Composite prepregged with epoxy.

  • PDF

A Study on the high-velocity impact resistance of fiber reinforced metal laminate materials (섬유강화 금속 적층 재료의 고속 충격 저항성에 관한 연구)

  • 손세원;김영태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1378-1381
    • /
    • 2003
  • Recently, high-performance composite materials have been used for various industrial fields because of their superior high strength, high stiffness and lower weight. In this study, manufactured fiber reinforced metal laminate materials are composed of two parts. One is hard-anodized A15083-O alloy as a face material and the other is high strength aramid fiber (Twaron CT709) and polyethylene fiber(Dyneema HB25) laminates as a back-up material. Resistance to penetration is determined by protection ballistic limit(V$\sub$50/, a static velocity with 50% probability for complete penetration) test method. V$\sub$50/ tests with 0$^{\circ}$ obliquity at room temperature were conducted with 5.56mm ball projectiles that were able to achieve near or complete penetration during high velocity impact tests.

  • PDF

High-Velocity Impact Damage Behavior of Carbon/Epoxy Composite Laminates

  • Kim, Young A.;Woo, Kyeongsik;Cho, Hyunjun;Kim, In-Gul;Kim, Jong-Heon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.190-205
    • /
    • 2015
  • In this paper, the impact damage behavior of USN-150B carbon/epoxy composite laminates subjected to high velocity impact was studied experimentally and numerically. Square composite laminates stacked with $[45/0/-45/90]_{ns}$ quasi-symmetric and $[0/90]_{ns}$ cross-ply stacking sequences and a conical shape projectile with steel core, copper skin and lead filler were considered. First high-velocity impact tests were conducted under various test conditions. Three tests were repeated under the same impact condition. Projectile velocity before and after penetration were measured by infrared ray sensors and magnetic sensors. High-speed camera shots and C-Scan images were also taken to measure the projectile velocities and to obtain the information on the damage shapes of the projectile and the laminate specimens. Next, the numerical simulation was performed using explicit finite element code LS-DYNA. Both the projectile and the composite laminate were modeled using three-dimensional solid elements. Residual velocity history of the impact projectile and the failure shape and extents of the laminates were predicted and systematically examined. The results of this study can provide the understanding on the penetration process of laminated composites during ballistic impact, as well as the damage amount and modes. These were thought to be utilized to predict the decrease of mechanical properties and also to help mitigate impact damage of composite structures.

The Effects of Proprioceptive Neuromuscular Facilitation Stretching and Ballistic Stretching on Hip Joint Flexibility and Muscle Tone (고유수용성 신경근 촉진 스트레칭 기법과 탄성 스트레칭 기법이 엉덩관절 유연성 및 근 긴장도에 미치는 영향)

  • Tae-Woo Kang;Seo-Yoon Park
    • PNF and Movement
    • /
    • v.22 no.1
    • /
    • pp.71-80
    • /
    • 2024
  • Purpose: The purpose of this study is to compare the effects of proprioceptive neuromuscular facilitation (PNF) stretching, based on ballistic stretching and the contract-relax technique, on hip joint flexibility and muscle tone in adults with shortened rectus femoris muscles. Methods: The study involved 40 adults with shortened rectus femoris muscles, identified using the modified Thomas test. Participants were randomly divided into two groups: PNF stretching, employing the contract-relax technique, and ballistic stretching. Measurements included muscle tension, hip joint range of motion, and muscle characteristics. The rectus femoris muscle shortening effect was confirmed by the modified Thomas test, while the flexibility effect was assessed through hip joint motion range. The muscle tension effect was determined using Myoton-PRO. Results: Both stretching methods resulted in significant improvements in modified Thomas test angles and frequency, with the PNF stretching group showing notably greater changes. However, neither stretching method significantly affected decrement or stiffness measurements. These findings suggest that PNF stretching may be more effective for certain outcomes compared to ballistic stretching. Conclusion: In summary, both stretching methods positively influenced flexibility and muscle tension, with PNF stretching showing a greater impact. These findings highlight the importance of selecting the appropriate stretching technique for achieving functional improvements in muscles, which could serve as valuable indicators for preventing and treating muscle injuries in both sports and daily activities.

A Study on the shape deformation of ball projectile(5.56mm) under the low velocity impact (저속충격시 Ball 탄(5.56mm)의 형상변화에 관한 연구)

  • 손세원;이두성;홍성희;김영태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.865-868
    • /
    • 2002
  • This study investigated the shape deformation of ball projectile(5.56mn) under the low energy impact by the use of the drop weight impact tester. ball projectile(5.56mm) consisted of the copper face with a lead core. The impact conditions were changed with the variations of the mass and the drop height of the impact tup. Shape deformation of ball projectile(5.56mm) after low velocity impact was measured using a video microscope and CCD camera. The test result showed that impact energy by changing of drop height of the impact tup affected shape deformation of ball projectile(5.56mm). So, it is important to study the relativity between shape deformation of ball projectile(5.56mm) and ballistic protection of plate(such as hybrid composite laminates) under the high velocity impact.

  • PDF

Test and Numerical Analysis for Penetration Residual Velocity of Bullet Considering Failure Strain Uncertainty of Composite Plates (복합판재의 파단 변형률 불확실성을 고려한 탄 관통 잔류속도에 대한 시험 및 수치해석)

  • Cha, Myungseok;Lee, Minhyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.3
    • /
    • pp.281-288
    • /
    • 2016
  • The ballistic performance data of composite materials is distributed due to material inhomogeneity. In this paper, the uncertainty in residual velocity is obtained experimentally, and a method of predicting it is established numerically for the high-speed impact of a bullet into laminated composites. First, the failure strain distribution was obtained by conducting a tensile test using 10 specimens. Next, a ballistic impact test was carried out for the impact of a fragment-simulating projectile (FSP) bullet with 4ply ([0/90]s) and 8ply ([0/90/0/90]s) glass fiber reinforced plastic (GFRP) plates. Eighteen shots were made at the same impact velocity and the residual velocities were obtained. Finally, simulations were conducted to predict the residual velocities by using the failure strain distributions that were obtained from the tensile test. For this simulation, two impact velocities were chosen at 411.7m/s (4ply) and 592.5m/s (8ply). The simulation results show that the predicted residual velocities are in close agreement with test results. Additionally, the modeling of a composite plate with layered solid elements requires less calculation time than modeling with solid elements.

Impact Damage of CFRP Laminated Composites Subjected to Impact Loading (충격하중을 받는 CFRP 적층복합재의 충격손상에 관한 연구)

  • M.S. KiM;Park, S.B.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.7
    • /
    • pp.116-125
    • /
    • 1997
  • An investigation was performed to study the impact damage in CFRP laminated composites subjected to impact loading. A finite element model has been developed for predicting the impact damage in laminated composite plates resulting from the ballistic impact. The finite element model was based on the higher-order shear deformation theory and was used to predict the initial intraply matrix cracking and the shape and size of interface delamination in laminated composites. Numerical simulation was performed and then the initiation of the matrix cracking and the shape and size of impacted induced delamination were predicted, and te results were compared with those of impact experiments with the same dimension and stacking sequences. A linear relationship holds between impact velocity and length and width of delamination. As impact velocity is increased, the increase of delamination length is highger than the increase of delamination width.

  • PDF