• 제목/요약/키워드: Ballistic Impact

검색결과 90건 처리시간 0.027초

근육 모델이 고려된 두부 및 경추 유한요소모델을 이용한 비관통 피탄 충격에 의한 인체 상해 해석 (Analysis of Human Body Injury by Non-penetrating Ballistic Impact Using a Finite Element Model of the Head and Neck)

  • 강문정;조영남;채제욱;유홍희
    • 대한기계학회논문집A
    • /
    • 제41권1호
    • /
    • pp.1-6
    • /
    • 2017
  • 헬멧을 착용한 병사의 비관통 피탄 충격은 총탄이 헬멧을 관통하지 않더라도 인체에 치명적인 상해를 유발한다. 이로 인한 인체 상해 해석을 위한 연구들이 이뤄져 왔으나 주로 두부의 손상에 초점을 맞춘 해석 모델이 개발되어 왔다. 비관통 피탄 충격에 의한 경추 및 경추부 관련 근육의 손상은 인체에 치명적인 상해를 입히지 않더라도 병사의 생존성에 상당한 영향을 미친다. 따라서 경추 및 경추부 근육을 포함한 모델 개발이 필요하다. 본 연구에서는 기존에 연구된 두부 모델과 근육 모델이 적용된 경추부 모델을 활용하여 인체의 상해해석을 수행하였다. 정량적 상해예측을 위해 응력, 변형률 및 HIC를 비교하였다. 경추부가 포함된 모델의 해석결과는 두부 모델만 고려된 해석결과보다 상해 정도를 작게 예측하였다. 모델의 신뢰성 확보를 위하여 두부 상해 해석 결과를 타 문헌과 비교하였다.

연강 판재에 대한 연강 구의 고속경사충돌 수치해석 (Numerical Simulation of High-Velocity Oblique Impact of Mild Steel Spheres Against Mild Steel Plates)

  • 유요한;장순남;정동택
    • 대한기계학회논문집A
    • /
    • 제26권3호
    • /
    • pp.576-585
    • /
    • 2002
  • A three-dimensional Lagrangian explicit time-integration finite element code for analyzing the dynamic impact phenomena was developed. It uses four node tetrahedral elements. In order to consider the effects of strain rate hardening, strain hardening and thermal softening, which are frequently observed in high-velocity deformation phenomena, Johnson-Cook model is used as constitutive model. For more accurate and robust contact force computation, the defense node contact algorithm was adopted and implemented. In order to evaluate the performance of the newly developed three-dimensional hydrocode NET3D, numerical simulations of the oblique impact of mild steel plate by mild steel sphere were carried out. Ballistic limit about various oblique angle between 0 degree and 80 degree was estimated through a series of simulations with different initial velocities of sphere. Element eroding by equivalent plastic strain was applied to mild steel spheres and targets. Ballistic limits and fracture characteristics obtained from simulation were compared with experimental results conducted by Finnegan et al. From numerical studies, the following conclusions were reached. (1) Simulations could successfully reproduce the key features observed in experiment such as tensile failure termed "disking"at normal impacts and outwards bending of partially formed plus segments termed "hinge-mode"at oblique impacts. (2) Simulation results fur 60 degrees oblique impact at 0.70 km/s and 0.91 km/s were compared with experimental results and Eulerian hydrocode CTH simulation results. The Lagrangian code NET3D is superior to Eulerian code CTH in the computational accuracy. Agreement with the experimentally obtained final deformed cross-sections of the projectile is excellent. (3) Agreement with the experimental ballistic limit data, particularly at the high-obliquity impacts, is reasonably good. (4) The simulation result is not very sensitive to eroding condition but slightly influenced by friction coefficient.

Ballistic impact analyses of triangular corrugated plates filled with foam core

  • Panigrahi, S.K.;Das, Kallola
    • Advances in Computational Design
    • /
    • 제1권2호
    • /
    • pp.139-154
    • /
    • 2016
  • The usage of sandwich structure is extensively increasing in lightweight protective structures due to its low density and other useful properties. Sandwich panels made of metal sheets with unfilled cellular cores are found to exhibit lower deflections by comparing to an equivalent monolithic plate of same metal and similar mass per unit density. However, the process of localized impact on solid structures involving plastic deformation, high strain rates, temperature effect, material erosion, etc. does not hold effectively as that of monolithic plate. In present work, the applications of the sandwich plate with corrugated core have been extended to develop optimized lightweight armour using foam as medium of its core by explicit finite element analysis (FEA). The mechanisms of hardened steel projectile penetration of aluminum corrugated sandwich panels filled with foams have been numerically investigated by finite element analysis (FEA). A comparative study is done for the triangular corrugated sandwich plate filled with polymeric foam and metallic foam with different densities in order to achieve the optimum penetration resistance to ballistic impact. Corrugated sandwich plates filled with metallic foams are found to be superior when compared to the polymeric one. The optimized results are then compared with that of equivalent solid and unfilled cores structure to observe the effectiveness of foam-filled corrugated sandwich plate which provides an effective resistance to ballistic response. The novel structure can be the alternative to solid aluminum plate in the applications of light weight protection system.

발사 충격을 받는 방사성 물질 운반용기의 건전성 평가 (Integrity Assessment on the Nuclear Transport Cask under the Ballistic Impact)

  • 양태호;이영신;이현승
    • 한국안전학회지
    • /
    • 제29권4호
    • /
    • pp.15-22
    • /
    • 2014
  • As the risk of the various external risk was increased, a study on the integrity assessment of the nuclear transport cask was needed. In this paper, an integrity assessment of the nuclear transport cask under the ballistic impact was studied. The projectile with L/D = 5 was used in simulation. The applied head shapes of the projectile were five types such as flat shape, conical shape, hemispherical shape, truncated conical and sliced flat shape, respectively. The range on the velocity of the projectile was 85 m/s to 680 m/s. The cask body of the nuclear transport cask was not penetrated by the projectile speed up to Vprojectile = 510 m/s. As the cask body was penetrated by the all types projectile with Vprojectile = 680 m/s and the cask lead in the nuclear transport cask was collided with the projectile. As the projectile moved to 31.3 mm in the cask lead, the cask lead was not penetrated by the projectile with Vprojectile = 680 m/s. The integrity assessment on the nuclear transport cask under ballistic impact up to Vprojectile = 680 m/s was obtained.

Safety assessment of an underground tunnel subjected to missile impact using numerical simulations

  • Thai, Duc-Kien;Nguyen, Duy-Liem;Pham, Thanh-Tung;Pham, Thai-Hoan
    • Computers and Concrete
    • /
    • 제27권1호
    • /
    • pp.1-12
    • /
    • 2021
  • This work presents a safety assessment of an underground tunnel subjected to a ballistic missile attack employing the numerical approach. For the impact simulation, a box shaped reinforced concrete (RC) structure with a cross section dimension of 8.0×10.0 m under a soil layer that was attacked by a SCUD missile was modeled using finite element (FE) software LS-DYNA. SCUD missile is one of a series of tactical ballistic missiles developed by Soviet Union during the Cold War, which is adopted for a short-range ballistic missile. The developed FE simulation for the penetration depth of the missile impacting into the soil structure was verified from the well-known formula of the penetration prediction. The soil-structure interaction, the soil type, and the impact missile velocity effects on the penetration depth of the missile into the different soil types were investigated. The safety assessment of the underground tunnel was performed with regard to the different depths of the underground tunnel. For each missile velocity and soil type, a specific depth called the unsafe depth was obtained from the analysis results. The structure beneath the soil beyond this depth remains safe. The unsafe depth was found to be increased with the increasing missile velocity.

A Theoretical Study for the Design of a New Ballistic Range

  • Rajesh G.;Lee J.M.;Back S.C.;Kim Heuy-Dong
    • Journal of Mechanical Science and Technology
    • /
    • 제20권7호
    • /
    • pp.1019-1029
    • /
    • 2006
  • The ballistic range has long been employed in a variety of engineering fields such as high-velocity impact engineering, projectile aerodynamics, creation of new materials, etc, since it can create an extremely high-pressure state in very short time. Of many different types of ballistic ranges developed to date, two-stage light gas gun is being employed most extensively. In the present study, a theoretical work has been made to develop a new type of ballistic range which can easily simulate a flying projectile. The present ballistic range consists of high-pressure tube, piston, pump tube, shock tube and launch tube. The effect of adding a shock tube in between the pump tube and launch tube is investigated. This improvement is identified as the reduction in pressures in the high pressure tube and pump tube while maintaining the projectile velocity. Equations of motions of piston and projectile are solved using Runge-Kutta methods. Dependence of projectile velocity on various design factors such as high pressure tube pressure, piston mass, projectile mass, area ratio of pump tube to launch tube and type of driver gas in the pump tube are also analyzed. Effect of various gas combinations is also investigated. Calculations show that projectile velocities of the order 8 km/sec could be achieved with the present ballistic range.

표면처리가 장갑재료의 방호한계에 미치는 영향 (An Effect of surface treatment on a Protection Ballistic Limits in armor material)

  • 손세원;김희재;이두성;홍성희;유명재
    • 한국정밀공학회지
    • /
    • 제20권12호
    • /
    • pp.126-134
    • /
    • 2003
  • In order to investigate the effect of surface treatment in Aluminium alloy and Titanium alloy which are used to armor material during ballistic impact, a ballistic testing was conducted. Anodizing was used to achieve higher surface hardness of Aluminium alloy and Iron plating in PVD(Physical Vapor Deposition) method was used to achieve higher surface hardness of Titanium alloy. Surface hardness test were conducted using a Micro victor's hardness tester. Ballistic resistance of these materials was measured by protection ballistic limit(V-50), a statical velocity with 50% probability penetration. Fracture behaviors and ballistic tolerance, described by penetration modes, are respectfully observed from the results of V-50 test and Projectile Through Plates (PTP) test at velocities greater than V-50. PTP tests were conducted with 0$^{\circ}$obliquity at room temperature using 5.56mm ball projectile. V-50 tests were conducted with 0$^{\circ}$obliquity at room temperature with projectiles that were able to achieve near or complete penetration during PTP tests. Surface hardness, resistance to penetration. and penetration modes of surface treated alloy laminates are compared to those of surface non-treated alloy laminates. A high speed photography was used to analyze the dynamic perforation phenomena of the test materials.

Ballistic behavior of steel sheet subjected to impact and perforation

  • Jankowiak, Tomasz;Rusinek, Alexis;Kpenyigba, K.M.;Pesci, Raphael
    • Steel and Composite Structures
    • /
    • 제16권6호
    • /
    • pp.595-609
    • /
    • 2014
  • The paper is reporting some comparisons between experimental and numerical results in terms of failure mode, failure time and ballistic properties of mild steel sheet. Several projectile shapes have been considered to take into account the stress triaxiality effect on the failure mode during impact, penetration and perforation. The initial and residual velocities as well as the failure time have been measured during the tests to estimate more physical quantities. It has to be noticed that the failure time was defined using a High Speed Camera (HSC). Thanks to it, the impact forces (average and maximum level), were analyzed using numerical simulations together with an analytical description coupled to experimental observations. The key point of the model is the consideration of a shape function to define the pulse loading during perforation.

전단농화유체 함침 다층직물의 방탄성능 및 거동 수치해석 (Numerical Analysis of the Ballistic Performance and Behavior of STF-Impregnated Multi-layer Fabrics)

  • 문상호;손권중;조희근;박종규;정의경;이만영;김시조
    • 한국군사과학기술학회지
    • /
    • 제19권3호
    • /
    • pp.330-338
    • /
    • 2016
  • Impregnation of shear-thickening fluid(STF) into high-strength fabrics makes a considerable improvement on the ballistic performance of fabric armors. Understanding dissipation augmentation due to shear thickening effects on yarn-yarn and yarn-projectile friction is of great importance in liquid armor research. This paper takes a shearthickening effect into account in numerical simulations by using a velocity-dependent friction model. Impact simulations were performed to validate the friction model as well as to evaluate the ballistic performance of STF-fabrics. Impact simulations on neat fabrics were also conducted to provide baseline results for comparison.

소재-구조 최적화 기반 다층-복합재료구조 충격흡수성능 (Impact Absorption Performance of Multi-layered Composite Structures based on Material-Structure Optimization)

  • 김병조;김태원
    • Composites Research
    • /
    • 제22권3호
    • /
    • pp.66-73
    • /
    • 2009
  • 적층 두께, 면밀도, 질량관성모우멘트는 소재의 구조-역학적 특성을 나타내는 중요한 인자들이다. 본 연구에서는 이와 같은 인자들이 다층-복합재료구조의 내충격 성능에 미치는 영향을 고찰하기 위해 높은 충격자 속도 하에서 탄자한계속도기 최대가 되는 재료-구조 최적화를 수행하였다. 세라믹복합재료, 고무, 알루미늄 그리고 알루미늄 폼으로 구성된 다층-복합재료구조의 최적화를 위해 Florence 모델과 Awerbuch-Bonder 모델을 연계한 통합 모델을 개발하였으며, 구속 조건으로써 적층 두께, 면밀도, 질량관성모우멘트를 함께 사용하였다. 결과에서 알 수 있듯이, 제안된 통합 모델을 통해 계산된 탄자한계속도는 유한표소해석에서의 탄자한계속도와 거의 유사함을 확인하였다. 통합 모델을 바탕으로 재료-구조 최적화를 통해 설정된 다층구조는 최적화를 수행하지 않은 다층구조에 비해 약 10.8%의 탄자한계속도 및 26.7%의 충격흡수에너지 향상이 나타남을 알 수 있다.