• 제목/요약/키워드: Ballistic

검색결과 445건 처리시간 0.028초

큰 초기 연소면적을 가지는 고체 모타의 침식 연소 및 연소 불안정 (Erosive burning and combustion instability of the solid rocket motor with large initial burning surface area)

  • 진정근;차홍석;이도형
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.1115-1121
    • /
    • 2017
  • 초기 추력을 증가시키기 위하여 넓은 초기 연소 면적을 가지는 고체 로켓 모타를 설계하고 지상연소 시험을 수행하였다. 그 결과 연소 거리에 따른 연소 면적 변화를 고려한 내탄도 성능 예측에 비하여 초기 압력과 추력이 낮게 측정되었다. 연소실 내부 유속과 연소 거리에 따른 연소 속도 변화를 검토한 결과 압력에 의하여 결정되는 연소 속도 대비 연소 속도가 감소하는 negative erosive burning이 발생함을 확인하였다. 또한 8개의 대칭형 fin 형상을 적용하여 radial mode의 연소 불안정이 발생함을 확인하였으며 fin의 배치를 변경하여 대칭성을 제거함에 따라 연소 불안정이 억제되었음을 확인하였다.

  • PDF

북한 SLBM 탐지를 위한 레이다 수신전력 간편 추정 방법 (Convenient Radar Received Power Prediction Method for North Korea SLBM Detection)

  • 서형필;박형훈;이경행
    • 한국시뮬레이션학회논문지
    • /
    • 제26권2호
    • /
    • pp.51-58
    • /
    • 2017
  • 본 연구에서는 시뮬레이션을 거친 북한의 잠수함 발사 탄도미사일의 비행궤적에 대하여 레이더 수신전력에 대한 간편 추정방법에 대해 제시하였다. 최근 북한은 잠수함 발사 탄도미사일의 비행시험에 성공하였으며, 이는 국제적인 안보에 상당한 위협이 되고 있다. 따라서 이러한 위협에 능동적으로 대응하기 위해서는 잠수함 발사 탄도미사일의 위협에 대해 레이더를 이용한 탐지특성에 대한 과학적이고 논리적인 분석이 이루어져야 한다. 이러한 관점에서 본 연구에서는 북한의 잠수함 발사탄도미사일의 비행궤적에 따른 레이더의 탐지특성을 분석하기 위해 레이더 반사 면적(RCS)과 전파특성에 대한 모델링 및 시뮬레이션을 실시하였다.

Development of Thin and Lightweight Bulletproof Windows Using Strengthened SLS Glass by Ion Exchange

  • Shim, Gyu-In;Kim, Seong-Hwan;Ahn, Deok-Lae;Park, Jong-Kyoo;Choi, Se-Young
    • 한국세라믹학회지
    • /
    • 제52권2호
    • /
    • pp.123-127
    • /
    • 2015
  • Soda-lime silicate (SLS) glass was strengthened by ion exchange for application of thin and lightweight bulletproof windows. The optimal conditions for ion exchanged SLS glass (thickness of 3 and 10 mm) at $480^{\circ}C$ were 10 and 17 min, respectively. The Vickers hardness values of the strengthened SLS glass samples with thicknesses of 3 and 10 mm were $5.9{\pm}0.22$ and $6.7{\pm}0.17GPa$, respectively, which values were about 22% higher than those of parent SLS glass. By laminating a multilayer defense film and polycarbonate sheet with ion exchanged SLS glass, we were able to make a thin and lightweight bulletproof window (24.25 mm, 4.57 kg, $50.06kg/m^2$, $V_{50}$ 901.8 m/s). As a result, the thickness of the bulletproof window was decreased by about 39% from 40 to 24.25 mm. The light transmittance in the visible range satisfied the standard (over 76%) for bulletproof windows.

CMA-ES를 활용한 수정질점탄도모델의 탄도수정계수 설정기법 (Fitting Coefficient Setting Method for the Modified Point Mass Trajectory Model Using CMA-ES)

  • 안세일;이교복;강태형
    • 한국군사과학기술학회지
    • /
    • 제19권1호
    • /
    • pp.95-104
    • /
    • 2016
  • To make a firing table of artillery with trajectory simulation, a precise trajectory model which corresponds with real firing test is required. Recent 4-DOF modified point mass trajectory model is considered accurate as a theoretical model, but fitting coefficients are used in calculation to match with real firing test results. In this paper, modified point mass trajectory model is presented and method of setting ballistic coefficient is introduced by applying optimization algorithms. After comparing two different algorithms, Particle Swarm Optimization and Covariance Matrix Adaptation - Evolutionary Strategy, we found that using CMA-ES algorithm gives fine optimization result. This fitting coefficient setting method can be used to make trajectory simulation which is required for development of new projectiles in the future.

연식주퇴 시스템의 동적 특성 해석 (Dynamic Characteristics of a Soft Recoil System)

  • 배재성;신철봉;황재혁;강국정
    • 한국군사과학기술학회지
    • /
    • 제11권4호
    • /
    • pp.13-19
    • /
    • 2008
  • In order to reduce the level of recoil force, new recoil technology must be employed. The present study discusses a soft-recoil system that can reduce dramatically the recoil force. The firing sequence of the soft recoil system is radically different from that of a conventional system. The gun is latched and preloaded in its out-of-battery position prior to firing. When unlatched, the gun is accelerated and forward momentum is imparted to the recoiling parts. This momentum is opposed by the ballistic force imparted by firing and the recoil force and stoke will be reduced. In the present study, the soft-recoil system with hydraulic dampers is simulated and its characteristics are investigated theoretically. The results of the simulation show that the soft-recoil system could dramatically reduce the recoil force and the recoil stroke compared to the conventional recoil systems. However, the soft-recoil system was not able to perform well when the firing fault modes like prefire, hang-fire, and misfire happen. Hence, we need to employ a control algorithm to prevent the damage of the recoil system due to these fault mode.

탄저압력계수를 이용한 5.56mm 소총의 압력-이동거리 곡선 산출 (A Study on the Pressure-travel Curve of 5.56mm Rifle Obtained from the Empirical Base Pressure Factor)

  • 이상길;이강영
    • 한국군사과학기술학회지
    • /
    • 제10권3호
    • /
    • pp.208-216
    • /
    • 2007
  • As the propellant mass is being accelerated out of the gun chamber along with the projectile, a continuous pressure gradient exists between the end of chamber and the base of the projectile. For this reason, the base pressure-travel curve is very important to design a conventional gun barrel in the interior ballistics, but it is not obtained briefly by empirical or theoretical method. In this paper, a simple relation between chamber pressure and base pressure was determined by the factor of base pressure(Cb) obtained from the experimental method. The simple relation gives a reasonable prediction for the reduction of pressure between the breech and the base of projectile owing to the axial gradient in the gun tube. The predictions have been validated by the infrared screen sensor and the PRODAS(PROjectile Design and Analysis System) for interior ballistic systems. Therefore, the base pressure-travel curve could be calculated from the chamber pressure measured by piezoelectric sensor. The base pressure-travel curve obtained from the simple relation offers initial information to gun barrel designer and is used for calculation of muzzle velocity.

RDX를 함유한 니트로셀루로스 조성 총포 추진제의 열적 및 강내탄도 특성 (Thermal and Internal Ballistic Properties of Nitrocellulose Based Gun Propellant Including RDX)

  • 권순길;황준식;박민규;김명섭
    • 한국군사과학기술학회지
    • /
    • 제20권4호
    • /
    • pp.514-519
    • /
    • 2017
  • To develop a gun propellant composition with high insensitivity and high energy, we formulated a composition by adding RDX into the nitrocellulose(NC) based propellant. The flame temperature of the RDX added NC(RAN) propellant was higher than that of neat NC propellant. The kinetic muzzle energy of RAN propellant was close to that of JA2 propellant at room temperature($21^{\circ}C$). The difference of kinetic muzzle energy of RAN propellant between high and room temperature settings as well as between a low and room temperature settings were less compared to those of JA2 propellant.

Local Electronic Structures of Graphene Probed by Scanning Tunneling Spectroscopy

  • Jang, Won-Jun;Lee, Eui-Sup;Kim, Howon;Yoon, JongKeon;Chang, Yunhee;Kim, Yong-Hyun;Kahng, Se-Jong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.132.2-132.2
    • /
    • 2013
  • Electrons in graphene make ballistic transport with very high mobility (${\sim}2{\times}105 $cm2V-1s-1), which holds promises for applications in fast electronic devices. However, such expectations have been hampered by the semi-metallicity or zero bandgap of graphene, which makes it impossible to completely turn off graphene transistor devices. Here, we report the observations of local bandgap modulations in Moir$\acute{e}$ patterned graphene on metal substrates using scanning tunneling microscopy and spectroscopy. The Moir$\acute{e}$ patterned graphene was made by combinations of self-assembly processes, and they showed additional electronic states that could be interpreted as sub-band states. Our experimental observations could be explained with orbital transitions of carbon atoms from sp2 to sp3, as supported by our density functional theory calculation results. Our findings will add new poweful components for device applications.

  • PDF

Research on the motion characteristics of a trans-media vehicle when entering water obliquely at low speed

  • Li, Yong-li;Feng, Jin-fu;Hu, Jun-hua;Yang, Jian
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권2호
    • /
    • pp.188-200
    • /
    • 2018
  • This paper proposes a single control strategy to solve the problem of trans-media vehicle difficult control. The proposed control strategy is just to control the vehicle's air navigation, but not to control the underwater navigation. The hydrodynamic model of a vehicle when entering water obliquely at low speed has been founded to analyze the motion characteristics. Two methods have been used to simulate the vehicle entering water in the same condition: numerical simulation method and theoretical model solving method. And the results of the two methods can validate the hydrodynamic model founded in this paper. The entering water motion in the conditions of different velocity, different angle, and different attack angle has been simulated by this hydrodynamic model and the simulation has been analyzed. And the change rule of the vehicle's gestures and position when entering water has been obtained by analysis. This entering water rule will guide the follow-up of a series of research, such as the underwater navigation, the exiting water process and so on.

Fast Noise Reduction Approach in Multifocal Multiphoton Microscopy Based on Monte-Carlo Simulation

  • Kim, Dongmok;Shin, Younghoon;Kwon, Hyuk-Sang
    • Current Optics and Photonics
    • /
    • 제5권4호
    • /
    • pp.421-430
    • /
    • 2021
  • The multifocal multiphoton microscopy (MMM) enables high-speed imaging by the concurrent scanning and detection of multiple foci generated by lenslet array or diffractive optical element. The MMM system mainly suffers from crosstalk generated by scattered emission photons that form ghost images among adjacent channels. The ghost image which is a duplicate of the image acquired in sub-images significantly degrades overall image quality. To eliminate the ghost image, the photon reassignment method was established using maximum likelihood estimation. However, this post-processing method generally takes a longer time than image acquisition. In this regard, we propose a novel strategy for rapid noise reduction in the MMM system based upon Monte-Carlo (MC) simulation. Ballistic signal, scattering signal, and scattering noise of each channel are quantified in terms of photon distribution launched in tissue model based on MC simulation. From the analysis of photon distribution, we successfully eliminated the ghost images in the MMM sub-images. If the priori MC simulation under a certain optical condition is established at once, our simple, but robust post-processing technique will continuously provide the noise-reduced images, while significantly reducing the computational cost.