• Title/Summary/Keyword: Ball-Thin Plate Spring Type Check Valve

Search Result 2, Processing Time 0.016 seconds

Pressure Transfer Analysis and Experimental Verification of Thin Plate Spring Type Check Valve Considering P-delta Effect (P-delta 효과를 고려한 박판 스프링 형 체크밸브의 압력전달 해석 및 실험적 검증)

  • Hwang, Yong-Ha;Nguyen, Anh Phuc;Hwang, Jai-Hyuk;Bae, Jae-Sung
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.5
    • /
    • pp.32-39
    • /
    • 2018
  • In this paper, the calculation of the theoretical pressure transfer ratio due to the deformation of the thin-plate spring type check valve applied to the small piezoelectric-hydraulic pump was carried out. A thin-plate check valve is a flexible body that is deformed by an external force. The deformation of the check valve affects the rate at which the chamber pressure is transferred to the load pressure. The theoretical pressure transfer ratio for each model was calculated to compare the difference between the assumption that the thin-plate check valve is a rigid body and that of the flexible body model. The P-delta effect was considered for the calculation of the pressure transfer ratio of the flexible check valve model. In addition, a verification test for the calculated pressure transfer ratio obtained by considering the deformation of the flexible check valve model was carried out. The load pressure was measured by applying a thin-plate and ball-thin plate spring type check valves, respectively. The experimental pressure transfer ratio was calculated using the respective load pressure obtained from the experiments. The validity of the pressure transfer analysis of the check valve, taking into consideration the P-delta effect, was verified by comparing it with the theoretically calculated pressure transfer ratio.

Pressurization Characteristics of Piezoelectric-Hydraulic Pump Adopting a Ball-Thin Plate Spring Type Check Valve (볼-박판 스프링 형 체크밸브가 적용된 압전유압펌프의 가압 특성)

  • Hwang, Yong-Ha;Hwang, Jai-Hyuk;Bae, Jae-Sung
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.2
    • /
    • pp.7-14
    • /
    • 2018
  • In this study, a new check valve was studied to improve the load pressure of a brake system with a small piezoelectric-hydraulic pump. During the pressurization process, the steady-state pressure at the load is affected by the ratio of the cross-sectional area of the check valve the chamber pressure and load pressure. Since the flow path cover of the check valve is made wider than the cross-sectional area of the output flow to prevent backflow, a method of reducing the area ratio is proposed for a higher load pressure by mounting an additional mass to a thin plate spring type check valve. To identify the effect of mounting an additional mass to the existing check valve on the load pressure, a simple brake system with a small piezoelectric-hydraulic pump was modeled using a commercial code AMESim. The AMESim modeling was verified by comparing the simulation results with the experimental results of the pump the existing check valve. The additional mass was added to the verified AMESim modeling and higher load pressure was able to be obtained through simulation. The 35% performance improvement in load pressure identified by carrying out pressurization test of the brake system after adopting the new check valve the small piezoelectric-hydraulic pump.