• Title/Summary/Keyword: Ball speed

Search Result 625, Processing Time 0.023 seconds

A Study on the Analysis and Design for a Ball Screw Whirling Machine (볼스크류 선회형 가공장비의 설계 및 해석에 관한 연구)

  • Lee, Choon-Man;Moon, Sung-Ho;Kim, Eun-Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.3
    • /
    • pp.173-178
    • /
    • 2017
  • Recently, a high-precision ball screw is an essential part of high-speed machines. However, producing high-precision ball screws has been costly and time-consuming. Nowadays, a whirling machine is used to produce high-precision ball screws efficiently. Rotating multi-tips are used to turn the ball screw in the whirling machine. In this study, a structural analysis was performed by a finite-element method to develop a whirling machine. An improved model of the whirling machine was proposed by the analysis. In addition, a thermal analysis was performed to confirm the thermal stability. The results of the analysis can be applied in order to further develop the whirling machine.

Mechanical Properties of 6061Al Extruded Composite with Ti-Ni-Cu Fabricated by Ball milling (Ball milling을 이용하여 제조된 6061Al기지 Ti-Ni-Cu 압출재의 기계적특성)

  • 안인섭;배승열;김유영
    • Journal of Powder Materials
    • /
    • v.6 no.4
    • /
    • pp.270-276
    • /
    • 1999
  • Ti-Ni-Cu alloy powders were fabricated by ball milling, and the properties of these powders were characterized. Mixed 50Ti-(50-x)Ni-xCu powders of 5 to 10at.%Cu composition were milled for 100 hours using SUS 1/4" balls in argon atmosphere. Ball to powder ratio was 20:1 and rotating speed was 100 rpm. Tensile strength, microstructure and phase transformation of ball milled Ti-(50-x)Ni-xCu powders were studied. After 100 hours milling, Ti, Ni and Cu elements were alloyed completely and an amorphous phase was formed. Amorphous phase was crystallized to martensite(B 19') and austenite(B2) after heat treatment for 1 hour at $850^{\circ}C$. As the Cu contents were increased, tensile strength of extruded 6061Al/TiNiCu was decreased, and B19'martensite phases In the TiNi particles were the causes of high tensile stress of extruded 6061Al/TiNiCu.NiCu.

  • PDF

Modeling and Sliding-mode Control of a Robot Manipulator actuated by the Ball Screw (볼나사를 이용한 매니퓰레이터의 모델링 및 슬라이딩모드 제어)

  • 최형식;박용헌;정경식;이호식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.292-295
    • /
    • 2001
  • Conventional robots actuated by motors with the speed reducer such as harmonic drive had weakness in delivering loads, pressing, grinding, and cutting jobs. To overcome this, a new type of robot actuated by the ball screw was proposed. The ball screw is actuated by using four bar mechanism. The dynamics model of the robot was set up. The robot has parameter uncertainties and nonlinearlity due to the ball screw actuator. To coordinate the robot, the sliding-mode control was applied.

  • PDF

Dynamics in Carom and Three Cushion Billiards

  • Han Inhwan
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.976-984
    • /
    • 2005
  • This paper presents the analysis results of dynamics in the billiards game within the frame­work of rigid-body mechanics and a numerical simulation program. The friction exists between the ball and the table bed as well as between the ball and the rail. There are three parts in the dynamic behavior of the ball on the table bed; motion of the ball on the table bed, collision between balls, and collision between the ball and the cushion. During the development of the simulation program, the dynamics problems such as rolling motion and three-dimensional frictional impact motion have been analyzed in detail. The theoretical issues are implemented into a viable graphic simulation program and its efficacy is demonstrated through the experi­mental validation of the billiards game. The resulting analysis results are verified quantitatively and qualitatively using high-speed video camera. Through the experimental tests, it was found that the physical parameters such as coefficients of restitution and friction vary according to the motion variables and corresponding empirical formulations were developed. The simulation and experimental results agree well.

Modeling & Control of a Multi-Joint Robot actuated by the Ball Screw (볼나사 구동기를 이용한 다관절 로봇의 모델링 및 제어)

  • 최형식;김영식;전대원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.323-326
    • /
    • 1997
  • Conventional robots actuated by motors with the speed reducer such as harmonic drive had weakness in delivering loads, pressing, grinding, and cutting jobs. To overcome this, the developer a new type of robot actuated by the ball screw. The robot is an articulated shape, which is composed of four axes. The base axis is actuated similarly with conventional robot, but the others are actuated by four bars mechanism composed of the ball screw. We setup the dynamics model of the robot. The robot has parameter uncertainties and nonlinearlity due to the ball screw actuator. To coordinate the robot, we applied sliding-mode control.

  • PDF

Thermal Expansion Analysis of the Ball Screw System by Finite Difference Methods (유한차분법을 이용한 볼스크류 시스템의 열팽창 해석)

  • Jeong, Seong-Jong;Park, Jeong-Gyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.4
    • /
    • pp.44-57
    • /
    • 1992
  • Ball screw systems have been used for positioning elements of machine tools and precision tables. In order to maintain the high rigidity and accuracy, a certain amount of preload is applied between the nut and the screw of ball screw systems. However, large amount of the preload oncreases the frictional heat. The temperature rises remarkably at the high speed motion, and the thermal expansion degrades the positioning accuracy. In this paper, a finite difference method is applied to analyse temperature distributions and thermal expansions of the ball screw system according to preload conditions and rotational speeds. Some simulation results show that the developed methodology is appropriate to study the thermal expansion characteristics of ball screw systems.

  • PDF

Finishing of Scupltured Surface through Cusp Pattern Control and Micro-ball End Milling (Cusp 패턴 조정과 미소 볼엔드 밀링을 이용한 3차원 자유곡면의 다듬질)

  • Sim, C.G.;Yang, M.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.177-183
    • /
    • 1994
  • The ball-end milling process is widely used in the die/mold industries, and it is very suitable for the machining of free-from surfaces. However, cusps(or scallops) remaining at the machined part along the cutter paths require anothe finish process such as polishing or grinding. In this study, a high sped micro ball-end milling method has been suggested for the finish of free- form surfaces. A new tool path which makes the geometrical roughness of workpiece be constant through the machined surface has been developed. In the high speed machining of micro ball-end muling experimets, the developed tool paths have been successfully applied. And it was concluded that the surface roughness from this finish cuts of micro ball-end milling process was acceptable.

  • PDF

Effects of ball kicking dual task training on gait performance and balance in individuals with chronic hemiparetic stroke

  • Kim, Minseong;Shim, Jaehun;Yu, Kyunghoon;Kim, Jiwon
    • Physical Therapy Rehabilitation Science
    • /
    • v.5 no.4
    • /
    • pp.170-176
    • /
    • 2016
  • Objective: The purpose of this study was to compare the effect of ball kicking dual task gait training with the addition of a cognitive task with general treadmill gait training (TGT) on gait speed, gait endurance, functional gait, balance and balance confidence in patients with chronic hemiparetic stroke. Design: Randomized controlled trial. Methods: Fourteen stroke patients who volunteered to participate in this study were randomly divided into two groups with seven patients in each group: ball kicking dual task training (DTT) group and TGT group. The DTT group received ball kicking DTT with cognitive tasks consisted of three stages and the TGT group received TGT using normal walking speed, respectively, for 30 minutes per day 3 days per week for 4 weeks. Outcome assessments were made with the 10-meter walking test (10MWT), 6-minute walking test (6MWT), functional gait assessment (FGA), Berg balance scale (BBS), timed up and go test (TUG), and the activities-specific balance confidence (ABC) scale. Results: The DTT group showed more significant improvement in the 10MWT, 6MWT, FGA, BBS, TUG, and ABC than the TGT group (p<0.05). In addition, within groups comparison showed significant improvement in all variables (p<0.05). Conclusions: The findings suggest that both ball kicking dual task gait training and TGT improve gait performance and balance in patients with chronic hemiparetic stroke. However, ball kicking dual task gait training results showed more favorable outcomes than TGT for chronic hemiparetic stoke patients.

A Study on the High Speed of Cutting Tool Feed System for the Noncircular Machining (비진원 가공용 공구 이송장치의 고속화 성능에 관한 연구)

  • 김성식
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.4
    • /
    • pp.96-103
    • /
    • 1998
  • With the advance of processing technology , so as to spare fuel, piston heads used in automobile reciprocating engine have complex 3-dimension, with respect to shape such as ovality, profile, eccentricity, offset, recess. Therefore, coming out of the existing process work used master cam. the process work is performed using a CNC lathe. For a precision processing, the processing work is need to make study of high speed feed gear synchronized with the rotative speed of main spindle. And then the high speed feeding system must maintain high dynamic stiffness, high speed and high positioning accuracy . In this paper, in order to achieve high speed cutting tool feeding. The linear brushless DC motor is used for satisfying this process work. The ball bush and turicite is used as the guidance of the feed gear system. Also linear encoders, digital servo amplifiers and controller are used for controlling driving motor. This paper presents the design and simulation of the new tool feed system for noncircular machining.

  • PDF

A Study on the Groove Design in Ball Screws (볼나사 그루브 상사비 결정에 관한 연구)

  • Park, Cheol-U;Kim, Dae-Eun;Lee, Sang-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.154-162
    • /
    • 1996
  • Ball screws are commonly used in linear motion feeding systems of various machine tools and automated systems. They are known to have relatively little backlash, high precision and efficiency compared to ordinary lead screws. Furthermore, the effectiveness of ball screw has made it the preferred choice of many newly developed high speed precision feeding units. The motivation of this work is to establish the groove edsigh basis of ball screws for the reduction of contact fatigue failure. In most instances, fatigue failure between ball and shaft groove is due to excessive contact pressure. Especially, the excessive load is causative of plastic flow below the contact surface, which can contribute to surface failure. But, in spite of small load, if groove conformity rate is large, contact pressure is increased and internal shear stress reach the yield value of the material. In such a point, the authors deal with design procedure for deciding the permissible conformity rate of a ball screw groove with the computational evaluation of contact pressure and maximum shear stress.