• Title/Summary/Keyword: Ball speed

Search Result 622, Processing Time 0.02 seconds

The Role of the Soft Law for Space Debris Mitigation in International Law (국제법상 우주폐기물감축 연성법의 역할에 관한 연구)

  • Kim, Han-Taek
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.30 no.2
    • /
    • pp.469-497
    • /
    • 2015
  • In 2009 Iridium 33, a satellite owned by the American Iridium Communications Inc. and Kosmos-2251, a satellite owned by the Russian Space Forces, collided at a speed of 42,120 km/h and an altitude of 789 kilometers above the Taymyr Peninsula in Siberia. NASA estimated that the satellite collision had created approximately 1,000 pieces of debris larger than 10 centimeters, in addition to many smaller ones. By July 2011, the U.S. Space Surveillance Network(SSN) had catalogued over 2,000 large debris fragments. On January 11, 2007 China conducted a test on its anti-satellite missile. A Chinese weather satellite, the FY-1C polar orbit satellite, was destroyed by the missile that was launched using a multistage solid-fuel. The test was unprecedented for having created a record amount of debris. At least 2,317 pieces of trackable size (i.e. of golf ball size or larger) and an estimated 150,000 particles were generated as a result. As far as the Space Treaties such as 1967 Outer Space Treaty, 1968 Rescue Agreement, 1972 Liability Convention, 1975 Registration Convention and 1979 Moon Agreement are concerned, few provisions addressing the space environment and debris in space can be found. In the early years of space exploration dating back to the late 1950s, the focus of international law was on the establishment of a basic set of rules on the activities undertaken by various states in outer space.. Consequently environmental issues, including those of space debris, did not receive the priority they deserve when international space law was originally drafted. As shown in the case of the 1978 "Cosmos 954 Incident" between Canada and USSR, the two parties settled it by the memorandum between two nations not by the Space Treaties to which they are parties. In 1994 the 66th conference of International Law Association(ILA) adopted "International Instrument on the Protection of the Environment from Damage Caused by Space Debris". The Inter-Agency Space Debris Coordination Committee(IADC) issued some guidelines for the space debris which were the basis of "the UN Space Debris Mitigation Guidelines" which had been approved by the Committee on the Peaceful Uses of Outer Space(COPUOS) in its 527th meeting. On December 21 2007 this guideline was approved by UNGA Resolution 62/217. The EU has proposed an "International Code of Conduct for Outer Space Activities" as a transparency and confidence-building measure. It was only in 2010 that the Scientific and Technical Subcommittee began considering as an agenda item the long-term sustainability of outer space. A Working Group on the Long-term Sustainability of Outer Space Activities was established, the objectives of which include identifying areas of concern for the long-term sustainability of outer space activities, proposing measures that could enhance sustainability, and producing voluntary guidelines to reduce risks to long-term sustainability. By this effort "Guidelines on the Long-term Sustainability of Outer Space Activities" are being under consideration. In the case of "Declaration of Legal Principles Governing the Activities of States in the Exp1oration and Use of Outer Space" adopted by UNGA Resolution 1962(XVIII), December 13 1963, the 9 principles proclaimed in that Declaration, although all of them incorporated in the Space Treaties, could be regarded as customary international law binding all states considering the time and opinio juris by the responses of the world. Although the soft law such as resolutions, guidelines are not binding law, there are some provisions which have a fundamentally norm-creating character and customary international law. In November 12 1974 UN General Assembly recalled through a Resolution 3232(XXIX) "Review of the role of International Court of Justice" that the development of international law may be reflected, inter alia, by the declarations and resolutions of the General Assembly which may to that extend be taken into consideration by the judgements of the International Court of Justice. We are expecting COPUOS which gave birth 5 Space Treaties that it could give us binding space debris mitigation measures to be implemented based on space debris mitigation soft law in the near future.

A comparative study on the correlation between Korean foods and the fractures of PFG and all ceramic crowns for posterior applications (구치용 도재소부금관과 전부도재관에 파절을 일으키는 한국음식에 관한 연구)

  • Kim, Jeong-Ho;Lee, Jai-Bong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.2
    • /
    • pp.156-163
    • /
    • 2009
  • Statement of problem: Recently, there have been increased esthetic needs for posterior dental restorations. The failure of posterior dental ceramic restoration are possible not only by the characters of the component materials but also by the type of food. Purpose: The research aim was to compare the in vitro fracture resistance of simulated first molar crowns fabricated using 4 dental ceramic systems, full-porcelain-occlusal-surfaced PFG, half-porcelain-occlusal-surfaced PFG, Empress 2, Ice Zirkon and selected Korean foods. Material and methods: Eighty axisymmetric crowns of each system were fabricated to fit a preparation with 1.5- to 2.0-mm occlusal reduction. The center of the occlusal surface on each of 15 specimens per ceramic system was axially loaded to fracture in a Instron 4465, and the maximum load(N) was recorded. Afterwards, selected Korean foods specimens(boiled crab, boiled chicken with bone, boiled beef rib, dried squid, dried anchovy, round candy, walnut shell) were prepared. 15 specimens per each food were placed under the Instron and the maximum fracture loads for them were recorded. The 95% confidence intervals of the characteristic failure load were compared between dental ceramic systems and Korean foods. Afterwards, on the basis of previous results, 14Hz cyclic load was applied on the 4 systems of dental ceramic restorations in MTS. The reults were analyzed by analysis of variance and Post Hoc tests. Results: 95% confidence intervals for mean of fracture load 1. full porcelain occlusal surfaced PFG Crown: 2599.3 to 2809.1 N 2. half porcelain occlusal surfaced PFG Crown: 3689.4 to 3819.8 N 3. Ice Zirkon Crown: 1501.2 to 1867.9 N 4. Empress 2 Crown: 803.2 to 1188.5 N 5. boiled crab: 294.1 to 367.9 N 6. boiled chicken with bone: 357.1 to 408.6 N 7. boiled beef rib: 4077.7 to 4356.0 N 8. dried squid: 147.5 to 190.5 N 9. dried anchovy: 35.6 to 46.5 N 10. round candy: 1900.5 to 2615.8 N 11. walnut shell: 85.7 to 373.1 N under cyclic load(14Hz) in MTS, fracture load and masticatory cycles are: 1. full porcelain occlusal surfaced PFG Crown fractured at 95% confidence intervals of 4796.8-9321.2 cycles under 2224.8 N(round candy)load, no fracture under smaller loads. 2. half porcelain occlusal surfaced PFG Crown fractured at 95% confidence intervals of 881705.1-1143565.7 cycles under 2224.8 N(round candy). no fracture under smaller loads. 3. Ice Zirkon Crown fractured at 95% confidence intervlas of 979993.0-1145773.4 cycles under 382.9 N(boiled chicken with bone). no fracture under smaller loads. 4. Empress 2 Crown fractured at 95% confidence intervals of 564.1-954.7 cycles under 382.9 N(boiled chicken with bone). no fracture under smaller loads. Conclusion: There was a significant difference in fracture resistance between experimental groups. Under single load, Korean foods than can cause fracture to the dental ceramic restorations are boiled beef rib and round candy. Even if there is no fracture under single load, cyclic dynamic load can fracture dental posterior ceramic crowns. Experimental data with 14 Hz dynamic cyclic load are obtained as follows. 1. PFG crown(full porcelain occlusion) was failed after mean 0.03 years under fracture load for round candy(2224.8 N). 2. PFG crown(half porcelain occlusion) was failed after mean 4.1 years under fracture load for round candy(2224.8 N). 3. Ice Zirkon crown was failed after mean 4.3 years under fracture load for boiled chicken with bone(382.9 N). 4. Empress 2 crown was failed after mean 0.003 years under fracture load for boiled chicken with bone(382.9 N).