• 제목/요약/키워드: Ball robot

검색결과 100건 처리시간 0.055초

본능ㆍ직관ㆍ이성 알고리즘을 이용한 축구로봇의 제어특성

  • 이대훈;최환도;하성윤;김중완
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.975-978
    • /
    • 2003
  • This paper presents an artificial intelligent model for a soccer robot. We classified soccer robot as artificial intelligent model into three elemental groups as instinct, intuition, reason. Instinct is responsible for keeping the ball, driving or rushing toward the ball. This is very simple fundamental action without regard to associates and enemies. Intuition contributes to the fast/slow moving and simple basic turing to get near to the ball and to make a goal noticing associates and enemies. Reason is the most intelligent part. The law of reason is not simple relatively with instinct and intuition. We also compared nerve system and muscles of human being model with controller and motor of physical soccer robot model individually. We had designed several algorithms and made programs th investigate effects and control soccer robot.

  • PDF

ROS-based control for a robot manipulator with a demonstration of the ball-on-plate task

  • Khan, Khasim A.;Konda, Revanth R.;Ryu, Ji-Chul
    • Advances in robotics research
    • /
    • 제2권2호
    • /
    • pp.113-127
    • /
    • 2018
  • Robotics and automation are rapidly growing in the industries replacing human labor. The idea of robots replacing humans is positively influencing the business thereby increasing its scope of research. This paper discusses the development of an experimental platform controlled by a robotic arm through Robot Operating System (ROS). ROS is an open source platform over an existing operating system providing various types of robots with advanced capabilities from an operating system to low-level control. We aim in this work to control a 7-DOF manipulator arm (Robai Cyton Gamma 300) equipped with an external vision camera system through ROS and demonstrate the task of balancing a ball on a plate-type end effector. In order to perform feedback control of the balancing task, the ball is designed to be tracked using a camera (Sony PlayStation Eye) through a tracking algorithm written in C++ using OpenCV libraries. The joint actuators of the robot are servo motors (Dynamixel) and these motors are directly controlled through a low-level control algorithm. To simplify the control, the system is modeled such that the plate has two-axis linearized motion. The developed system along with the proposed approaches could be used for more complicated tasks requiring more number of joint control as well as for a testbed for students to learn ROS with control theories in robotics.

4족 보행 로봇의 장애물 회피와 축구하기 (Obstacle Avoidance and Playing Soccer in a Quadruped Walking Robot)

  • 서현세;성영휘
    • 대한임베디드공학회논문지
    • /
    • 제7권3호
    • /
    • pp.143-150
    • /
    • 2012
  • In this paper, we introduce an intelligent quadruped walking robot that can perform stable walking and a couple of intelligent behaviors. The developed robot has two sets of ultrasonic sensors and six sets of infrared sensors and can perform obstacle avoidance by detecting obstacles and estimating the distances and directions of those obstacles. The robot also has a stereo camera and can paly soccer by detecting a ball and estimating the 3 dimensional coordinates of the ball. In performing those intelligent behaviors, the robot needs to have the capability of generating its walking patterns, solving the inverse kinematics problem, and interfacing several sensors in realtime. Therefore we designed a hierarchical controller that consists of a main controller and an auxiliary controller. The main controller is a 32-bit DSP that can perform fast floating-point opertaion and the auxiliary one is a 8-bit micro-controller. We showed that the developed quadruped walking robot successfully perform those intelligent behaviors through experiments.

로봇 요소품 설계 프로그램 개발 (Development of a Robot Element Design Program)

  • 정일호;김창수;서종휘;박태원;김희진;최재락;변경석
    • 한국정밀공학회지
    • /
    • 제22권4호
    • /
    • pp.113-120
    • /
    • 2005
  • This paper presents the development of the design of the robot element. Robot element design is an important part of robot design since it decides the performance and life time of the robot. It is necessary that the robot kinematics and the robot dynamics are accomplished to design the robot elements. The robot kinematics and dynamics determine the design parameters of the element. We developed a robot element design program with which a designer can design the robot element with convenience and reliability. The program is composed of motor, harmonic driver and ball-screw design. The program is founded on the virtual robot design program. The virtual robot design program is the powerful software which may be used to solve various problems of the robot kinematics and dynamics. The robot element design program may be used to calculate the design parameters of the element that are necessary to design robot element. Therefore, the designer can decide upon the available robot elements available to perform the objective of the robot. The robot element design program is expected to increase the competitiveness and efficiency of the robot industry.

새로운 구조의 다관절 로봇 매니퓰레이터 (A Revolute Robot Manipulator with a New Structure)

  • 최형식;김영식;백창열
    • 대한기계학회논문집A
    • /
    • 제28권5호
    • /
    • pp.539-546
    • /
    • 2004
  • Conventional robot manipulators actuated by motors with the speed reducer such as the harmonic drive have weakness in the load capacity, since the speed reducer does not have enough strength. To overcome this, a new type of the robot actuator based on the four-bar-link mechanism driven by the ball screw was proposed and constructed. Also, a new type of a revolute-jointed robot manipulator composed of the developed actuators was developed. The base axis is actuated by the motor with the conventional speed reducer, but the other axes are actuated by the proposed actuators. The kinematics and dynamics of the robot were analyzed, and the performance test of the robot was made. Through the test results, the performance of superior load capacity versus the robot weight is shown.

로봇 축구 대회를 위한 영상 처리 시스템 (A Vision System for ]Robot Soccer Game)

  • 고국원;최재호;김창효;김경훈;김주곤;이수호;조형석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.434-438
    • /
    • 1996
  • In this paper we present the multi-agent robot system and the vision system developed for participating in micro robot soccer tournament. The multi-agent robot system consists of micro robot, a vision system, a host computer and a communication module. Micro robot are equipped with two mini DC motors witf encoders and gearboxes, a R/F receiver, a CPU and infrared sensors for obstacle detection. A vision system is used to recognize the position of the ball and opponent robots, position and orientation of our robots. The vision system is composed of a color CCD camera and a vision processing unit(AISI vision computer). The vision algorithm is based on morphological method. And it takes about 90 msec to detect ball and 3-our robots and 3-opponent robots with reasonable accuracy

  • PDF

AVR 기술을 활용한 엔터테인먼트용 골프로봇 개발 (Development of golf robot as entertainment using AVR Technology)

  • 김병수;오관택;박용호
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2006년도 추계 종합학술대회 논문집
    • /
    • pp.344-347
    • /
    • 2006
  • 로봇은 사람에게 가장 도움을 주는 형태로 개발되고 있는데, 그 중에서 엔터테인먼트는 아주 중요한 하나의 분야가 될 것이다. 본 논문에서는 An을 활용하여 엔터테인먼트용 골프 로봇을 개발한 것이다. 인간과 즐거움을 함께 나누는 엔터테인먼트 로봇은 다른 로봇산업과 함께 급속한 발전을 이루어 갈 것으로 전망된다. 본 논문에서 연구 개발한 골프 로봇은 AVR을 활용하여 엔터테인먼트용으로 개발하였고, 개발된 골프 로봇은 실제 골프에서 하는 것과 같이 로봇이 볼을 날리고 퍼팅 로봇을 활용하여 로봇을 볼에 가까이 접근시켜 퍼팅함으로 볼을 홀에 넣는 방식으로 구현하였다. 이 골프 로봇은 퍼팅 로봇을 여러 대 사용하면 실제 골프처럼 여러 명이서 게임을 할 수도 있는 골프 로봇이다. 따라서 AVR을 활용한 엔터테인먼트용 골프 로봇의 개발은 실제 골프처럼 할 수 있는 로봇이기에 엔터테인먼트로서의 골프 로봇으로 충분히 가치가 있다고 본다.

  • PDF

Development of a Stewart Platform-based 6-axis Force Sensor for Robot Fingers

  • Luo, Minghua;Shimizu, Etsuro;Feifei, Zhang;Ito, Masanori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1814-1819
    • /
    • 2005
  • This paper describes the development of a Stewart platform-based robot force sensor with distinctive structure of ball joints. The number of ball joints is only a half of the similar style sensors, so it is possible to reduce size and weight of the sensor. The structure of ball joint is described and discussed. Furthermore, we use strain gauges, but not liner voltage differential transformers, as sensing elements, in order to reduce size and weight of the sensor. It is also proposed that beams are replaced with pipes as sensing elements of the sensor. The ball joints and sensing elements with pipes can effectively reduce the error of the sensor. A geometric analysis model is also proposed. The external force and its moment can be measured with this model. Moreover, the performance of this sensor was tested. The test results conducted to evaluate the sensing capability of the sensor is reported and discussed.

  • PDF

인체형 이족 보행로봇의 개발 (Development of Human-Sized Biped Robot)

  • 최형식;박용헌;이호식;김영식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.15-18
    • /
    • 2000
  • We developed a human-sized BWR(biped walking robot) driven by a new actuator based on the ball screw which has high strength and high gear ratio. The robot overcomes the limit of the driving torque of conventional BWRs. Each leg of the robot is composed of three pitch joints and one roll joint. In all, a 10 degree-of-freedom robot with two balancing joints was developed. The BWR was developed to walk autonomously such that it is actuated by small torque motors and is boarded with DC battery and controllers. In the performance test, the BWR performed nice motions of sitting-up and sitting-down. Through the test, we could find capability of high performance in biped-walking.

  • PDF

Development of an autonomous biped walking robot

  • hyeung-sik choi;Oh, jeong-min;Kim, young-sik;Baek, chang-yul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.105.6-105
    • /
    • 2002
  • Contents 1We developed a new type of lower part of the human-sized BWR (biped walking robot) driven by a new actuator based on the ball screw which has high strength and high gear ratio. Each leg of the robot is composed of three pitch Joints and one roll joint. In all, a 8 degree-of-freedom robot was developed. A new type of actuator for the robot is proposed, which is composed of four bar link mechanism driven by the ball screw. The BWR was designed to walk autonomously by adapting small DC motors for the robot actuators and has an embeded controller system including host computer, batteries and motor drivers. In the performance test, we had basic stable walking data so far, but we f...

  • PDF