• Title/Summary/Keyword: Ball filling rate

Search Result 6, Processing Time 0.016 seconds

A study on formation of slurry ice by the reversing flow (역전 유동층에 의한 슬러리아이스 생성에 관한 연구)

  • Oh, C.;Mun, S.B.;Choi, Y.G.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.376-381
    • /
    • 2006
  • This study is experimented to observe an influence of experimental conditions on production characteristics of slurry ice by putting ball into test section to disturb ice adhesion. And at this experiment it used ethylene glycol-water solution and the concentration is 20wt%. The experimental apparatus was constructed of ethylene glycol-water solution and slurry ice storage tank. brine tank, pumps for ethylene glycol-water solution and brine circulating, a mass flow-meter data logger for fluid temperature measuring and a vertical circular tube with two copper tubes as test section. The experiments were carried out under various conditions, with mean velocity of fluid at the entry ranging from 0.07 to 0.13m/s and ball diameter is 10mm, 15mm. Also ball filling rate is 33%, 50%.

An experimental study on formation of slurry ice in reversing flow (역전 유동층 내에서의 슬러리아이스 생성에 관한 실험적 연구)

  • Choi, Young-Gyu;Yoon, Seok-Hun;Oh, Cheol
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.49-50
    • /
    • 2006
  • This study experimented to observe an influence of experimental conditions on production characteristics of slurry ice by putting ball into test section to disturb ice adhesion. And at this experiment it used ethylene glycol-water solution and the concentration is 20wt%. The experimental apparatus was constructed of ethylene glycol-water solution and slurry ice storage tank, brine tank. pumps for ethylene glycol-water solution and brine circulating, a mass flow-meter, data logger for fluid temperature measuring and a vertical circular tube with two copper tubes as test section. The experiments were carried out under various conditions, with mean velocity of fluid at the entry ranging from 0.07 to 0.13m/s and ball diameter is 10mm, 15mm. Also ball filling rate is 33%, 50%.

  • PDF

A Study on Formation of Slurry Ice by using the Reversing Flow in a Bundle of Tube (역전 유동층을 이용한 관군 내에서의 슬러리아이스 생성에 관한 연구)

  • Oh, Cheol;Choi, Young-Gyu
    • Journal of Navigation and Port Research
    • /
    • v.35 no.5
    • /
    • pp.365-370
    • /
    • 2011
  • The ice-thermal energy storage cooling system has been applied to relief a significant portion of the peak demand of electricity during the daytime in summer. Slurry ice type system is one kind of ice-thermal storage cooling system utilizing cheaper off-peak electricity. This study is experimented to observe an influence of experimental conditions on production characteristics of slurry ice by using reversing flow, which is putting reversing material into test section to disturb ice adhesion. At this experiment, poly propylene ball of dimeter 10 mm was used as reversing material, and ethylene glycol-water solution of 20wt% concentration was used as flow material. The experimental apparatus was constructed of the slurry ice making and storage tank(test section), the brine tank, pumps for ethylene glycol-water solution and brine circulating, a mass flow-meter, data logger for fluid temperature measuring. The experiments were carried out under various conditions, with volumetric flow rate, ball filling rate and air filling rate.

Flow Analysis and an Experimental Study on Formation of Slurry Ice in the Reversing Flow Layer (역전 유동층 내의 유동해석 및 슬러리아이스 생성에 관한 연구)

  • Oh, Cheol;Choi, Young-Gyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.421-428
    • /
    • 2011
  • Thermal energy storage(TES) cooling system using cheaper electricity of off-peak time has been applied to relieve a significant portion of the peak demand of electricity during the daytime in summer. Slurry ice type thermal energy storage cooling system is one kind of more efficient ice-thermal energy storage cooling system than Ice-on-Coil type or Encapsulated type TES cooling system, even though, which are more popular TES system. This experimental study was carried out to observe flow pattern and formation of slurry ice in reversing flow layer to improve efficiency of heat transfer between fluid and freezing tube and to disturb ice adhesion on tube surface. The reversing flow layer was made by using reversing materials in heat exchanger section(test section) to disturb ice adhesion. At this experiment, styrofoam balls and poly propylene balls were used as reversing materials, and a 20wt% solution of ethylene glycol was used as reversing flow layer. The experimental apparatus was constructed of the test section for making/storing slurry ice, the brine tank, pumps for circulating of a 20wt% solution of ethylene glycol and brine, a flow-meter, a data logger for measuring the temperature. The experiments were carried out under various conditions, with volumetric flow rate, ball filling rate and air filling rate.

Recycle of Unburned Carbon and Microceramics as Alternatives to Rubber Weight-Adding Materials and Polypropylene Filling Agents (고무증량재 및 플라스틱 충진재의 대체재로 UC와 CM의 재활용)

  • Han, Gwang Su;Kim, Dul-Sun;Lee, Dong-Keun
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.24-32
    • /
    • 2021
  • Unburned carbon (UC) was successfully separated from fly ash by up to 85.8% in weight via froth flotation using soybean oil as a collector. An 18 wt% yield of microceramics (CM) could be achieved by employing a hydro cyclone separator located immediately after the flotation equipment. UC and CM were tested as alternatives to weight-adding material and polymer (especially polypropylene in this study) filler, respectively. Large particles of UC were broken down into smaller ones via ball milling to have an average particle diameter of 10.2 ㎛. When crushed UC was used as an alternative to clay as a rubber weight-adding material, a somewhat lower tensile strength and elongation rate than the allowed values were unfortunately obtained. In order to satisfy the standard limits, further treatment of UC is required to enhance surface energy for more intimate bonding with rubber. CM was observed in spherical forms with an average diameter of 5 ㎛. The surface of the CM particles was modified with phenol, polyol, stearic acid, and oleic acid so that the surface modified CM could be used as a polypropylene-filling agent. The flowability was good, but due to the lack of coupling forces with polypropylene, successful impact strength and flexural strength could not be obtained. However, when mixing the surface-modified CM with 1% silane by weight, a drastic increase in both the impact strength and flexural strength were obtained.

Effect of Hollow Glass Powder on the Self-Compacting Concrete (유공 유리분말이 자기충전 콘크리트의 특성에 미치는 영향)

  • Yoon, Seob;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.2
    • /
    • pp.141-149
    • /
    • 2018
  • In this study, compacting, passing performance, segregation resistance and rheological properties were tested to improve the stability of fresh concrete in the production and construction of self-compacting concrete (SCC) using hollow glass powder(GB). As a result, T50 reaching time was shortened up to amount of GB $2.0kg/m^3$. The compacting according to the amount of GB was improved by ball bearing effect of GB. However, T50 reaching time was slightly increased at $4.0kg/m^3$. In the case of passing performance, the result showed that plain was Class 1, GB $0.5{\sim}2.0kg/m^3$ was Class 0, GB $4.0kg/m^3$ was Class 1. Therefore, the passing performance was improved with 'No blocking' up to amount of GB $2.0kg/m^3$. Passing performance Block step (PJ) number by J-ring method was also best at GB $1.0kg/m^3$. In the case of segregation resistance according to the amount of GB, dynamic segregation resistance was increased compared to plain regardless of the amount of GB. And static segregation resistance showed 2.5% of segregation rate at GB $1.0kg/m^3$. Therefore, it was greatly improved compared to plain (12.5%). In the case of rheology property according to the amount of GB, plastic consistency by increasing of GB content didn't show big difference. However, yield stress by increasing of GB content was decreased with GB $1.0kg/m^3$. In conclusion, GB $1.0kg/m^3$ was effective for improvement of compacting, passing performance and yield stress. Also, it will be useful for stability of SCC by improving segregation.