• 제목/요약/키워드: Ball end milling

검색결과 133건 처리시간 0.027초

볼 엔드밀을 사용한 곡면가공 시뮬레이션 시스템 개발 (Development of Simulation System Curved Surface Rendering using a Ball-end Milling)

  • 박홍석;박준학;이재종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.125-128
    • /
    • 1997
  • They use a Ball End-mill in order to manufacturing sculptured surface when making metal mold, mold, cars and aircraft. In the work of a Ball End-mill case, customers do not often satisfied with manufacturing precision. Eventually, they have to re-work for the purpose of meeting manufacturing precision. There are resulted in lots of loss, whereby, in terms of both time and costs. The reasons of tolerance reducing manufacturing precision are thermal strain, the surface is damaged because of increasing cutting force and tool wear, tool deflection etc.. We focus on, however, manufacturing precision caused due to deflection of tool.

  • PDF

고경도 금형강의 CBN 볼 엔드밀 가공에서 가공성 평가 (Machinability Evaluation of CBN Ball End Milling in Die & Mold Steels with High Hardness)

  • 김홍규;심재형;이종찬
    • 한국공작기계학회논문집
    • /
    • 제16권4호
    • /
    • pp.119-126
    • /
    • 2007
  • Generally, the machinability of materials that have a good mechanical properties is poor. The material having a high strength, high toughness in high temperature and wear resistance, it is difficult to remove a chip from workpiece. STD11 and NAK80 are kinds of these materials and these materials can be used in many industrial fields. But it is limited in use because of high cost and poor machinability. In this experimental study, the cutting of STD11 and NAK80 were used to decide the machinability and the tool shape of CBN ball end mill. From the results, the CBN ball end mill is verified that the estimated cutting edge shape of rake angle 30 degree has consistent effect on the tool wear and cutting force.

STD11의 볼엔드밀링 공정에서의 절삭력 해석 (Cutting force analysis in ball-end milling processes of STD11)

  • 김남규
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.52-57
    • /
    • 2000
  • STD11 is one of difficult-to-cut materials and its cutting characteristic data is not built enough. A bad cutting condition of it leads to low productivity of die and mould, so it is necessary to evaluate the machining characteristics of STD11. In this paper, the relations of the geometry of ball-end mill and mechanics of machining with it are studied. The helix angle of ball-end mill varies according to a location of elemental cutting edge in the cutting process are difficult to calculate accurately. To calculate instantaneous cutting forces, it is supposed that the tangential, radial and axial cutting force coefficients are functions of elemental cutting edge location. Elemental cutting forces in the x,y and z direction are calculated by coordinate transformation. The total cutting forces are calculated by integrating the elemental cutting forces of engaged cutting edge elements. This model is verified by slot and side cutting experiments of STD11 workpiece which was heat-treated to HRC45.

  • PDF

Statistical characterisation of end milling of AISI 52100 annealed bearing steel

  • Benghersallah, Mohieddine;Benchiheub, Slimane;Amirat, Abdelaziz
    • Advances in materials Research
    • /
    • 제7권2호
    • /
    • pp.137-148
    • /
    • 2018
  • The present paper is a contribution in characterising end milling process of AISI 52100 ball bearing steel through statistical analyses of variance (ANOVA). The latter has been performed to identify the effect of the cutting parameters on the machined surface roughness and the cutting tool life. Wear measurements have been carried on multilayer coated carbide inserts and the respective surface roughness has been recorded. Taguchi's technique has been adapted to conduct the design experiments in terms of orthogonal arrays according to the cutting parameters (cutting speed, feed rate and depth of cut), the type of coating (TiN, TiCN, TiAlN) and lubricating condition. Regression analyses have conducted to the development of simplified empirical models that can be effectively used to predict surface roughness and tool wear in the present milling process.

5-축 CNC 밀링으로의 자유곡면 가공에 관한 연구 (I) 공구축 방향의 벡터와 포스트 프로세싱 (A Study on the Machining of Sculptured Surfaces by 5-Axis CNC Milling (l) Cutter Axis Direction Verctor and Post-Processing)

  • 조현덕;전용태;양민양
    • 대한기계학회논문집
    • /
    • 제17권8호
    • /
    • pp.2001-2011
    • /
    • 1993
  • This study deals with the machining of sculptured surfaces on 5-axis CNC milling machine with end mill cutter. The study (I) has the following contents. In 5-axis CNC milling, CL-data consist of CC-data and cutter axis direction vector at the CC-point. Thus, in machining of the sculptured surface on 5-axis CNC milling machine, determination of the direction vector of the milling cutter is very important. The direction vector is obtained by the fact that bottom plane of the milling cutter must not interfere with the free-form surface being machined. The interference is checked by the z-map method which can be applied in all geometric types of the sculptured surfaces. After generating NC part programs from 5-axis post-processing algorithms, sculptured surfaces were machined with 5-axis CNC milling machine (CINCINNATI MILACRON, 20V-80). From these machining tests, it was shown that the machining of the free-form surfaces on 5-axis CNC milling machine with the end mill has smaller cusp heights and shorter cutting time than on 3-axis CNC milling machine with the ball-end mill. Thus, 5-axis CNC end milling was effective machining method for sculptured surfaces. The study (II) deals with the prediction of cusp height and the determination of tool path interval for the 5-axis machining of sculptured surfaces on the basis of study(I).

볼엔드밀 중삭가공시 커습에 의한 절삭특성과 공구마모 (Effect of Cusp on the Cutting Characteristics and Tool Wear of Semi-finishing in Ball End Milling)

  • 조철용;문상돈;류시형
    • 한국공작기계학회논문집
    • /
    • 제15권5호
    • /
    • pp.79-84
    • /
    • 2006
  • In modem manufacturing, many products that have geometrically complicated features, including three-dimensional sculptured surfaces, are designed and produced. In the production of these complex-shaped mechanical components, e.g. automobile dies, molds, and various engineering applications, the ball-end milling process is one of the most widely used NC machining processes that consists of roughing, semi-finishing and finishing. In semi-finishing, cusps remained after roughing according to the used tools that have two patterns of stairs and wave shapes. These cusp shapes have air-cut in cutting and instability caused by high cutting speed that affects the cutting characteristics such as cutting force and tool wear. Cutting characteristics are measured and analyzed through cutting force, FFT analysis of cutting force and tool wear along cutting length according to low tool paths with same metal removal rate. As a results of the experiments, this study suggests the optimal conditions of tool path and cutting direction. This approach for the cutting characteristics of semi-finishing provides a useful aid for the productivity and efficiency improvements of NC machining processes.

엔드밀 가공에서 런아웃 측정을 통한 가공성 평가에 관한 연구 (Evaluation of Workability through Runout in End Milling)

  • 김병국;김경수;김정석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.165-168
    • /
    • 1995
  • The quality of products is depend on the performance of machine and machining conditions. In this study the runout of spindel is selected as a parameter through which we could appreciate the workability of machine and the quality of products. Throigh the runout of high speed machining center on freeload machining, the revolution accuracy and the characteristics in connection with spindle speed are evaluated. It was experimented flat and ball end milling for estimating machine accuracy and workability by measuring spindel runout. In end, This paper shows the effects of runout on surface roughness through analysis of runout and roughness profiles.

  • PDF

A Study on the Surface Roughness of Aluminum Alloy for Heat Exchanger Using Ball End Milling

  • Chung, Han-Shik;Lee, Eun-Ju;Jeong, Hyo-Min;Kim, Hwa-Jeong
    • 동력기계공학회지
    • /
    • 제19권1호
    • /
    • pp.64-69
    • /
    • 2015
  • Aluminum alloy is a material with a high strength-weight ratio and excellent thermal conductivity. It neither readily corrodes nor quickly weakens at low temperatures, but can be easily recycled. Because of these features, aluminum heat exchangers are widely used in aluminum alloy. In addition, the aluminum alloy used in other areas is expected to gradually increase. As a result, researchers have been continuously studying the cutting patterns of aluminium alloy. However, such studies are fewer than those on the cutting patterns of ordinary steel. Moreover, the research on ball endmilling with aluminium alloys has not received much attention. Therefore, in this study, an attempt was made to find the optimal cutting pattern among the seven cutting patterns for the machining of the commonly used aluminum alloy using ball endmilling for a heat exchanger. The optimal pattern was found by comparing the different shapes and surface roughness values produced by the seven patterns.

Insert Tip용 End Mill 공구의 형상정의와 5-축 가공에 관한 연구 (A Study on Geometric Definition and 5-Axis Machining of End Mill with Insert Tip)

  • 조현덕;박영원
    • 한국공작기계학회논문집
    • /
    • 제11권6호
    • /
    • pp.1-9
    • /
    • 2002
  • This study describes the geometric characteristics and the 5-axis machining method in order to make end mill cutter coming with insert tips. End mill geometry is consisted of flute part and insert tip part. Flute part modeled by using ruled surfaces with constant helix angle, and insert tip part modeled by rectangular planes containing tapped hole of specified direction in its center. In this study, the modeled insert tip part considered both of a radial rake angle and a axial rake angle, because they were important cutting conditions. In order to machining the virtual end mill defined from geometric characteristics, we programmed a special software to machining the end mill considered in this study. This software can generate NC-codes about following processes, end milling or ball end milling of flute part end milling of rectangular plane, centering of hole, drilling of hole, and tapping of hole. Ant sampled end mills were modeled and machined on 5-axis CNC machining center with two index tables. Since machined end mills were very agreeable to designed end mills, we saw that the method proposed in this study can be very useful for manufacturing of end mill body with insert tip.

진동 마이크로 밀링을 이용한 미세 반복 패턴 가공 기술 연구 (Machining of Repetitive Micro Patterns using Oscillation Micro Milling)

  • 노승국;김경호;박종권
    • 한국정밀공학회지
    • /
    • 제31권5호
    • /
    • pp.381-387
    • /
    • 2014
  • This paper introduces a system to machine micro-sized patterns effectively on surface based on micro-milling process using tools with simultaneous rotation and oscillation, oscillation micro milling. To review the effectiveness of proposed concept, we integrated a micro-spindle supported by active magnetic bearings with a precision 3-axis air bearing stage using double-wedge mechanism, and tested this oscillation milling. Two types of oscillation milling were tested, which are linear oscillation milling with a flat end mill and elliptical oscillation milling with a ball end mill with 0.3 mm of diameter. The spindle was rotating 110 krpm and workpiece was moving constant speed of 2~8 mm/sec during the oscillation milling. As the results, multiple oval shape dimples were generated in regular spacing, and the variation of elliptical motion made different shapes of patterns. The results showed that proposed oscillation milling can be successfully used for machining repeated micro-patterns.